Welcome to the Post-Petaflop Era

By Michael Feldman

June 10, 2008

This week’s achievement of the Linpack petaflop milestone by the IBM Roadrunner was widely predicted, but nonetheless, impressive. Last year at this time, the number one system was Lawrence Livemore’s Blue Gene/L at 280 teraflops, and only two other systems — the Cray XT4/XT3 supercomputer at Oak Ridge and the Cray Red Storm system at Sandia — made it past 100 teraflops. In fact, the raw computation power of the Roadrunner exceeds the aggregate performance of the top 10 system in June 2007.

The nearly insatiable demand for supercomputing power has driven a remarkable increase in HPC capability over the last decade and a half. During this time the computational performance of the top systems have increased at a rate of 1000x for every 10 years. As I mentioned in Monday’s Roadrunner coverage, that pace of increase is an order of magnitude greater than that reflected by Moore’s Law. Today, Moore’s Law is contributing relatively little to processor speed increases; it’s being used to add more cores. But even if the chip real estate dedicated to cores scales proportionally as transistors shrink, (which is probably not the case since the memory bandwidth bottleneck encourages larger on-chip caches), that would only yield about a 100x increase in raw performance every 10 years.

Which explains why clusters and supercomputers are scaling both up (more processors and cores) and out (more nodes). But, even ignoring the software challenges of distributing applications over more and more CPUs, just jamming additional commodity processors into a system runs up against physical constraints like power and space, not to mention system cost. It is significant that the first petaflop system was not an x86 cluster.

All of this explains the HPC community’s current obsession with hardware accelerators — FPGA, GPU, Cell, ClearSpeed and vector processors. While not general-purpose in nature, these accelerators offer a lot of computational power in a small, cheap, and energy-efficient package.

In the Roadrunner, each AMD Opteron core is paired with a PowerXCell 8i (Cell) processor, which acts as a high-performance floating point accelerator. But the 12,240 Cell processors can barely be characterized as accelerators since they account for the vast majority of the system’s performance. The 6,120 dual-core Opterons contribute only around 3 percent to the total performance. The PowerXCell 8i offers over 100 double precision gigaflops for a modest 92 watts, which is about an order of magnitude better performance and performance/watt than the dual-core Opterons in Roadrunner. So minimizing the Opteron parts was the key to maximizing FLOPS.

But there are other ways to get to a petaflop. In fact, it’s not immediately apparent to me why the DOE, who bought the Roadrunner system for Los Alamos and the NNSA, didn’t go the Blue Gene/P route. The latter machine represents IBM’s other petaflop-capable system, which was introduced a year ago. A handful are in the field, but no one has purchased a petaflop-sized system to date.

The price tag for a petaflop Blue Gene/P would probably be just north of $100 million, in the same general vicinity as the $120 million that the DOE paid for Roadrunner. And the DOE certainly has plenty of experience with Blue Gene technology, so no red flags there. Finally, compared to Roadrunner, Blue Gene comes with a simpler and more mature software environment.

From the application point of view, the biggest difference between the two architectures is that Blue Gene needs more than twice as many processing cores to get to a petaflop than Roadrunner — about 300K cores for Blue Gene/P versus 120K for Roadrunner (each Cell processor has 9 cores). That means your application needs to be divided into more pieces to run on the Blue Gene than on the more computationally dense Roadrunner. More parallelism might be fine for some apps, but not for others.

Energy efficiencies of the two architectures are comparable. At 376 megawatts/watt, Roadrunner is tops in this regard. But Blue Gene/P comes in at a very respectable 350 megaflops/watt. The energy efficiency of Blue Gene is the result of using low-power ASICs, based on the PowerPC, a type of processor that is more at home in embedded systems.

In general, processors for embedded application are designed for low power rather than speed, but they offer HPC vendors an alternative way to build large-scale energy-efficient systems. SiCortex, for example, is using MIPS processors to create a low-power line HPC clusters.

But as systems get into the tens of petaflops range, even commodity embedded chips won’t be practical. Researchers at LBNL estimate that a Blue Gene-like system capable of running an application at 10 petaflops of sustained performance will cost over a billion dollars and require tens of megawatts to operate, even taking into account future price/performance advances. The Berkeley researchers are looking at using ultra-low-power custom processors to make these kinds of systems practical.

As energy costs and hardware costs really start to limit the kind of machines vendors can offer in a post-petaflop world, commodity processors may yield to either accelerators or low-power, homogeneous processors. Over the next ten years, a battle between these two approaches may take place on the path from petaflops to exaflops. But this week, the accelerators won the first round.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Explain the Asteroid that Killed the Dinosaurs

May 28, 2020

The supercomputing community has cataclysms on the mind. Hot on the heels of supercomputer-powered research delving into the fate of the neanderthals, a team of researchers used supercomputers at the DiRAC (Distributed R Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This