Welcome to the Post-Petaflop Era

By Michael Feldman

June 10, 2008

This week’s achievement of the Linpack petaflop milestone by the IBM Roadrunner was widely predicted, but nonetheless, impressive. Last year at this time, the number one system was Lawrence Livemore’s Blue Gene/L at 280 teraflops, and only two other systems — the Cray XT4/XT3 supercomputer at Oak Ridge and the Cray Red Storm system at Sandia — made it past 100 teraflops. In fact, the raw computation power of the Roadrunner exceeds the aggregate performance of the top 10 system in June 2007.

The nearly insatiable demand for supercomputing power has driven a remarkable increase in HPC capability over the last decade and a half. During this time the computational performance of the top systems have increased at a rate of 1000x for every 10 years. As I mentioned in Monday’s Roadrunner coverage, that pace of increase is an order of magnitude greater than that reflected by Moore’s Law. Today, Moore’s Law is contributing relatively little to processor speed increases; it’s being used to add more cores. But even if the chip real estate dedicated to cores scales proportionally as transistors shrink, (which is probably not the case since the memory bandwidth bottleneck encourages larger on-chip caches), that would only yield about a 100x increase in raw performance every 10 years.

Which explains why clusters and supercomputers are scaling both up (more processors and cores) and out (more nodes). But, even ignoring the software challenges of distributing applications over more and more CPUs, just jamming additional commodity processors into a system runs up against physical constraints like power and space, not to mention system cost. It is significant that the first petaflop system was not an x86 cluster.

All of this explains the HPC community’s current obsession with hardware accelerators — FPGA, GPU, Cell, ClearSpeed and vector processors. While not general-purpose in nature, these accelerators offer a lot of computational power in a small, cheap, and energy-efficient package.

In the Roadrunner, each AMD Opteron core is paired with a PowerXCell 8i (Cell) processor, which acts as a high-performance floating point accelerator. But the 12,240 Cell processors can barely be characterized as accelerators since they account for the vast majority of the system’s performance. The 6,120 dual-core Opterons contribute only around 3 percent to the total performance. The PowerXCell 8i offers over 100 double precision gigaflops for a modest 92 watts, which is about an order of magnitude better performance and performance/watt than the dual-core Opterons in Roadrunner. So minimizing the Opteron parts was the key to maximizing FLOPS.

But there are other ways to get to a petaflop. In fact, it’s not immediately apparent to me why the DOE, who bought the Roadrunner system for Los Alamos and the NNSA, didn’t go the Blue Gene/P route. The latter machine represents IBM’s other petaflop-capable system, which was introduced a year ago. A handful are in the field, but no one has purchased a petaflop-sized system to date.

The price tag for a petaflop Blue Gene/P would probably be just north of $100 million, in the same general vicinity as the $120 million that the DOE paid for Roadrunner. And the DOE certainly has plenty of experience with Blue Gene technology, so no red flags there. Finally, compared to Roadrunner, Blue Gene comes with a simpler and more mature software environment.

From the application point of view, the biggest difference between the two architectures is that Blue Gene needs more than twice as many processing cores to get to a petaflop than Roadrunner — about 300K cores for Blue Gene/P versus 120K for Roadrunner (each Cell processor has 9 cores). That means your application needs to be divided into more pieces to run on the Blue Gene than on the more computationally dense Roadrunner. More parallelism might be fine for some apps, but not for others.

Energy efficiencies of the two architectures are comparable. At 376 megawatts/watt, Roadrunner is tops in this regard. But Blue Gene/P comes in at a very respectable 350 megaflops/watt. The energy efficiency of Blue Gene is the result of using low-power ASICs, based on the PowerPC, a type of processor that is more at home in embedded systems.

In general, processors for embedded application are designed for low power rather than speed, but they offer HPC vendors an alternative way to build large-scale energy-efficient systems. SiCortex, for example, is using MIPS processors to create a low-power line HPC clusters.

But as systems get into the tens of petaflops range, even commodity embedded chips won’t be practical. Researchers at LBNL estimate that a Blue Gene-like system capable of running an application at 10 petaflops of sustained performance will cost over a billion dollars and require tens of megawatts to operate, even taking into account future price/performance advances. The Berkeley researchers are looking at using ultra-low-power custom processors to make these kinds of systems practical.

As energy costs and hardware costs really start to limit the kind of machines vendors can offer in a post-petaflop world, commodity processors may yield to either accelerators or low-power, homogeneous processors. Over the next ten years, a battle between these two approaches may take place on the path from petaflops to exaflops. But this week, the accelerators won the first round.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire