GPGPUs Make Headway in Bioscience

By Michael Feldman

June 25, 2008

Few user organizations have had more hands-on experience with accelerators than the National Cancer Institute’s Advanced Biomedical Computing Center (ABCC). We asked Jack Collins, manager of the ABCC’s Scientific Computation and Program Development group, for his take on accelerator appropriateness.

HPCwire: You and others at your site have experimented heavily with accelerators over the years, first Cray bit matrix multipliers, then FPGAs and now GPUs. Why?

Jack Collins: As the sizes of the scientific problems that we encounter scale, so must our solutions to computational demands. For instance, next-gen sequencing is generating terabytes of information and we need to analyze it quickly because whole farms of these machines are being deployed. Also, imaging is now being fully integrated into the workflow and not being treated as a separate area. From the technology side, price/performance is a big driver. Price includes the total cost of ownership: power, cooling, programming, etc. And when you look at new technologies, such as the Tesla card, that offer one teraflop performance you can get a lot of bang for the buck.

HPCwire: What applications are you trying to accelerate? Can you talk about them in some detail?

Collins: There are several applications. The most straightforward for GPGPU is molecular dynamics and simulation. There is a lot of computation in the kernel and it maps very well to the hardware. An example would be NAMD. It was ported to the GPGPU by University of Illinois folks and they got a factor of about 200x speedup. We have other codes that have a similar kernel so we expect similar results. Small molecule-protein docking is another area where we are using the GPGPU. Right now we’re at about 10x over the latest Xeon processor, and we should see another 2 to 4x with a couple of more tweaks.

We’re also looking at imaging applications where the processing and analysis is taking too long. Analyzing 3D images using a GPGPU for the computation and another to display the results is something we’re very interested in. These applications map very well to the architecture. We’re also exploring bioinformatics applications, but the really great thing about the GPGPU and CUDA right now is that post-docs and universities are porting codes and putting them back into the public domain at an incredible rate. This means that the community effort can be used to leverage standard codes without a large investment. Everyone has a GPU, and CUDA can be gotten by just hitting the download button in your browser.

HPCwire: What have you learned about using accelerators?

Collins: In general, you must realize that you’re taking a risk. Things generally sound better than they actually perform. Basically, I now ask about the programming model before I even care about how the hardware works. If there is no reasonable way to program the system, even if it’s buggy and a bit clunky, then pass unless you have resources to burn on a project that is high risk. Another important thing is the market being targeted. If the market isn’t big enough to support the company, then the company and product may disappear whether it works or not.

HPCwire: Why are you working with GPUs today?

Collins: GPUs have several advantages over other accelerators right now. First, they don’t cost that much. Second, everyone has access to both the hardware and the programming tools. Once it’s in the hands of that many people, the number of applications and tools will simply take off. Third, and quite importantly, the performance is truly staggering. And finally, the programming model is being developed hand-in-hand, at least at NVIDIA, with the hardware development, with the goal of making it accessible to general programmers and not just specialists.

HPCwire: Have you abandoned FPGAs?

Collins: No. But our efforts have been scaled back significantly.

HPCwire: GPUs generally lack 64-bit precision and error correction capability. Are those important for any of your applications?

Collins: For many of our applications we can live with these limitations, especially when we’re doing some Monte Carlo or genetic algorithm runs that are averaged over a large number of simulations. However, I think that the new NVIDIA products are addressing these limitations.

HPCwire: What results have you gotten from using GPUs so far?

Collins: We’ve gotten some nice speedups on molecular docking, as I said earlier. Talking to others, preliminary numbers look very good on the other codes I described as well. The results are good enough to change the way we approach problems from a business workflow perspective.

HPCwire: How difficult are GPUs to program and work with compared with other accelerators you’ve tried?

Collins: Compared to earlier accelerators where you needed special libraries that may have severe limitations, or to FPGAs where one needed to understand the basic hardware, the CUDA programming model is relatively straightforward. In my mind it’s more like OpenMP or UPC. You may have to restructure your code or algorithm to get good performance, but you can still recognize the programming language when you’re done.

HPCwire: What are you hoping for from GPUs?

Collins: For problems that map well to the GPU, it can dramatically change the workflow of our scientists. On the desktop it can bring a lot of analyses into the “doable” or “interactive” realm, and that can really change the way we attack a problem. In the computing center, adding nodes of GPU that can accelerate an application by 100x can free up that many cores on my compute servers and reduce my power and cooling requirements to keep up with demand. Adding a GPU instead of another 100 cores is much easier if the software supports it. When the next generation of GPU comes out, I can simply replace it. And finally, at home I have a supercomputer in a box. At one teraflop for a new Tesla card, I can do a lot on my home computer now.

HPCwire: What company or companies are you working with, and what kind of products do they have?

Collins: For GPGPUs I’m primarily working with NVIDIA, and I’m focused on the Tesla card that they’ve just announced. We’re also working with Silicon Informatics to help us port code to GPUs in the drug design and discovery area.

HPCwire: What’s the collaborative model you’re using to work with them?

Collins: They’re providing training, advanced access to hardware, and actually listening to us about what is important for our problems. We’ve worked through direct communication as well as bringing some of our vendors together with NVIDIA to build a better product before it gets to us.

HPCwire: What advice do you have for other HPC users who are considering adding accelerators to their computing mix?

Collins: See if their problem maps to the accelerator they are considering. Determine what speedup is necessary for their applications to make a good business justification for porting to the new hardware. Are they looking for 2x, 10x, 100x? Is that goal realistic? And check out the programming model that is necessary to take advantage of the accelerator. If it takes six months to compute the problem on today’s hardware or six hours on an accelerator after ten years of coding, the answer becomes obvious when you look at the total time to solution. And we’re really interested in answering the question, right?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire