Gravity Attracts a GigE HPC Cluster

By Michael Feldman

July 1, 2008

Not all supercomputing rides on InfiniBand or proprietary interconnects. For technical applications that decompose neatly into loosely-coupled threads, a big cluster with vanilla Gigabit Ethernet does just fine. The persistence of Ethernet on the TOP500 attests to the interconnect’s continued viability on big clusters. On the latest June list, GigE is being used on 284 of the top systems, which is actually slightly up from the 273 recorded in November 2007. But as clusters scale out into hundreds or even thousands of nodes, Ethernet infrastructure can grow into a complex burden of cables and multi-layer switches.

The top Ethernet system on the TOP500 list — at number 58 — is the new ATLAS cluster at the Max Planck Institute for Gravitational Physics in Germany. Installed earlier this year, the ATLAS system is being used in the Institute’s quest to detect gravitational waves — one of the big prizes remaining in physics. A gravitational wave is a fluctuation in the curvature of space-time that is theorized to occur as the result of cosmic events in the early universe, or more recently, from the extreme gravitational fields generated by neutron stars and black holes. First predicted by Albert Einstein in 1917 as part of his General Theory of Relativity, gravitational waves have never been directly measured. Through the use of large arrays of laser interferometers deployed in the U.S., Italy and Germany, it is hoped that evidence of the elusive wave will be discovered.

Because the effect of gravitational waves are so subtle here on Earth, very large quantities of data must be collected, and enormous computational power must be brought to bear to prove their existence. It is hoped that the ATLAS system will provide a platform to help move this effort forward. The 32.8 teraflop (Linpack) machine is made up of 1,342 single-socket compute nodes, occupying 32 racks.

Each ATLAS compute server has a 2.4 GHz Intel quad-core Xeon processor and communicates with the rest of the system via a 1 Gigabit link to a top-of-rack Woven TRX 100 Ethernet switch, which acts as a GigE aggregator with four 10 GigE uplinks. The uplinks funnel the server data to the 144-port 10 GigE Woven EFX 1000 core switch. Since the configuration is not over-subscribed, non-blocking Ethernet communication is provided for each server.

Because of the amount of data involved in gravitational wave analysis, the ATLAS compute servers are hooked up to 1.3 petabytes of external storage. The storage consists of 42 separate file nodes, 30 of which are GigE-linked servers connected via another TRX 100; the other 12 are 10 GigE-connected Sun Microsystems “Thumper” file servers directly hooked into the EFX 1000 core switch. An additional 500 GB of direct-connected storage is provided on each compute node. The CPU on any server can access the local disk storage on any other server as well as the central storage nodes.

Unlike more tightly-coupled MPI codes, analysis of gravitational wave data is an embarrassingly parallel application that lends itself to a server farm type set up. Each node is involved in very data-intensive computations, but node-to-node communication is minimal. Most of the data communication takes place between the compute nodes and the storage.

Because of the highly parallel nature of the code and the reliance on low latency I/O communications, the more granular, single-socket servers were the best fit for the application. Bruce Allen, director of the Max Planck Institute for Gravitational Physics in Hannover, Germany, who led the specification ATLAS system, determined that even at the computational scale of the ATLAS system, a Gigabit Ethernet interconnect was the logical choice. “Something like InfiniBand or Myrinet would have been overkill for this kind of application,” he said.

What he really liked about Woven’s solution was how well designed and how cost-effective it was, and also how easily it scaled up to the 1,000-plus-node cluster he had in mind. Since the EFX 1000 incorporates 144 10 GigE ports, this single core switch, along with the TRX edge switches, supported compute and storage communication for the entire cluster. Another attraction of the Woven technology is its ability to dynamically determine the optimal path for the data. The vSCALE chip in the switch is constantly monitoring latency of the active and alternative paths in the Ethernet fabric. If it finds an alternative path with lower latency, the hardware redirects traffic to take advantage of the faster route. This is especially advantageous when all the nodes are accessing both central storage and local disks on the other nodes. According to Allen, the Woven hardware was better designed and more flexible than any other Ethernet solution they looked at.

“What is remarkable about the ATLAS cluster is that we were able to take the lead very cost-effectively with a creative combination of more processors at lower clock rates and a higher Ethernet switching efficiency,” explained Allen in a press release on Tuesday. “Woven’s 10 Gigabit Ethernet Fabric switch is able to deliver sustained performance at an impressive 64 percent of the theoretical peak. The HPC Linpack experts we consulted tell us that they have never seen such a high level of Ethernet efficiency on such a large cluster. Without the Woven switch, ATLAS would not be the world’s fastest Ethernet cluster. It’s that simple.”

Allen has also helped develop an even larger system that is being used to process the gravitational wave data. This one is also Ethernet-based, but communicates at sub-GigE speeds. The [email protected] project is a distributed grid of personal computers, and like its ATLAS sibling, is used to crunch some of the same laser interferometer data collected from around the world.

According the Allen, the current Einstein grid represents over 150 teraflops of computing power and adds about 2,000 new personal computers each day. Like the larger [email protected] and [email protected] projects, [email protected] relies on the kindness of strangers to donate spare PC cycles for the advancement of science. And while not as efficient as the Institute’s ATLAS supercomputer, the grid offers a lot of extra capacity for wave calculations. Between ATLAS and [email protected], another mystery of the universe may finally be revealed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This