IBM Looks to Tap Massive Data Streams

By John E. West

July 3, 2008

A 2007 IDC study estimates that the world generated 161 billion gigabytes of digital information, and that the pace of increase in the information we deal with will outstrip our capacity to store it by 2010 (see insideHPC post). All this data — conversations, television programs, music, movies, stock trades, commodities values, medical images, shopping lists, and test results — isn’t just a statistical artifact. It is the stuff that drives the scientific, economic, and social engines of our society.

I spoke with Nagui Halim, director of event and streaming systems at IBM Research, about IBM’s stream computing efforts and where he sees the field going. He framed the problem for me by pointing out the fundamental difference between the computing that most of us do every day, and stream computing: “In traditional computing the machine dictates the pace at which things gets done. In stream computing, the machine’s job is to figure out what’s going on in the real world in real time.”

This sounds fairly innocuous, but when you try to put this principle into practice, the challenges start to add up. For example, according to Halim the financial services industry generates five million data items per second. One way to make money in the markets is by exploiting information asymmetries, that is, cases where you know something that most people don’t. In some situations these asymmetries only exist for a few seconds. So real-time systems supporting these applications have to be able to consume, analyze, and react to the millions of pieces of data they are seeing in a just few milliseconds, and then move on to the next 5 millions pieces of information. The same kinds of demands exist in real-time monitoring of complex industrial processes such as chip manufacturing, credit card fraud detection, commercial flight tracking, and so on.

Of course these data streams didn’t spring up overnight, and companies have experience building solutions to handle all of this information. The efforts to date have all been focused on solving specific problems in specific businesses. Halim’s goal is to take what’s been learned from the various point solutions that industry has developed to deal with information flows as they happen, and build a generalized infrastructure and body of knowledge that will accelerate the adoption of stream computing by researchers and individuals alike. Halim and IBM are working the whole solution, from hardware, operating systems, and compilers to middleware and tools.

Although this is still a project in IBM’s labs, the existing stream computing software base includes millions of lines of code and over 300 patents. Many books and papers have been written about the work they are doing. Now, the stream environment that IBM has built is being tested in the real world. One of those pilots, with TD Bank Financial Group in Canada, is using a Blue Gene and IBM’s stream computing software to support trading operations (see IBM’s press release from April).

IBM is relying on its stable of HPC hardware to provide the computational horsepower needed to support large scale stream computing, but not in the way you might expect. “The general model for HPC is to take a large problem and split it up into pieces. In stream computing we’re organizing the computation in quite a different way,” says Halim.

According to him, many stream computing applications can be organized as a pipeline, subdividing supercomputers into pools of processors that each deal with the needs of a specific stage of the pipeline, taking the data that comes in and transforming it for further action in a subsequent stage. For example, in a voice processing application, the stages might be organized to first decrypt individual voice packets, assemble packets into a conversation, convert the conversation to text, and then analyze the text looking for key phrases of interest that might alert a human or spark additional action and analyses. Depending upon the amount of voice information coming in, you might need 10s, 100s, or 1,000s of processors to handle the load.

But where Halim’s team is really focused is on the software infrastructure needed to address stream computing needs in a universal way. The goal is to provide a general-purpose model of creating a stream application from individual data processing components that can be assembled to produce the desired results. The stream environment needs to be able to adapt to the information it is seeing, allowing it to focus on areas of interest and rapidly move past uninteresting features or trends. The environment also must be able to adapt when the user’s needs change, and react to changes in the resources (both human and computer) available to work on the problem.

Importantly, IBM is designing the stream infrastructure to be useful to non-experts from the ground up, which would be a welcome change from much of the software that is written for supercomputers.

One facet of this strategy is that the environment can run applications on resources varying from laptops to supercomputers, automatically taking advantage of the computational attributes of the hardware available to it, and with the ability to schedule tasks around hardware failures. The stream software environment also includes composable generic components (e.g., join operators, dominant contributor in an array, change point detection, and so on) that will make the system useful right out of the box, allowing non-experts to do useful work with a short learning curve.

And out of the box it will come. Although this is still a research project and there remains much work to be done before the product is shrink wrapped, Halim and his team are motivated by an expansive view that “stream computing is not just a new computing model, it is a new scientific instrument.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire