A Tribute to the Earth Simulator

By Markus Henkel

July 8, 2008

The Earth Simulator is a legend in computational meteorology and long-term climate simulations. For years it has been one of the fastest supercomputers, designed to evaluate the effects of global warming and problems in solid earth geophysics. In 2009, a comprehensive upgrade of the Earth Simulator will begin a new era for the history-making supercomputer.

For six years, the Earth Simulator has been a constant in the twice-yearly TOP500 list of the most powerful supercomputers. Currently ranked in 49th place, a significant enhancement is scheduled. A new and comprehensive reinstallation is underway to enable researchers to conduct enhanced climate simulations to produce results that are beyond the scope of any other computing system.

Again the NEC Corporation in Japan, responsible for the original version in 2002, is assigned to deliver the upgraded Earth Simulator. This new mega-simulator is being installed in the Japanese research centre JAMSTEC (Japan Agency for Marine-Earth Science and Technology) and is destined to help scientists find answers to mitigate the impact of global climate change on the earth’s ecosystems. With a maximum processing power of 131 teraflops (131 billion arithmetic operations per second), a planned special SX-9-series will be able to accomplish so-called ultra-high-speed simulations in real time.

Until the new system is installed in 2009, the current Earth Simulator will continue to work on unique scientific topics. Simulations of the global climate both in the atmosphere and in the oceans made the Earth Simulator the expert in assessing climatology issues and the most important contributor to the Fourth IPCC Assessment report in 2007. The need for continuing this effort is obvious. In the period from 1950 to 2005, a massive increase in major weather-related natural catastrophes was observed, and between 1994 and 2005 there were almost three times as many weather-related natural catastrophes as in the 1960s.

The beginning: The fastest computer in the world

It all started in 2002. The fastest computer in the world was installed at the Yokohama Institute for Earth Sciences (YES). Its 640 nodes, with 8 vector processors each, occupy 3,250 square meters. The system is based on the SX-6 architecture and consists of 5,120 CPUs, 10 terabytes of main storage, 700 terabytes of hard disc storage units and 1.6 petabytes of streamer storage. An unrivalled accomplishment back then, the system is still very much in use today, and not only by Japanese researchers. International collaborative projects with institutes in the US, France and UK have attained unique results.

At first Japan used the supercomputer for its own interests. In 1923 the Kanto earthquake killed 130,000 people and destroyed Tokyo and Yokohama. In addition to that, the birth rate rose explosively, forcing the government to pay much more attention to potential national catastrophes. Today, however, the Earth Simulator is in demand worldwide, helping to clarify problems associated with a global climate. This field has indeed become a global issue, as evidenced by recent deadly natural disasters, such as the Tsunami in 2004 and the latest earthquake in China, which killed hundreds of thousands of people.

One important aim of climate supercomputers is not only understanding incidents like earthquakes, but predicting them as early as possible. Another field of activity, which the original Earth Simulator is perfect for, is the realization of coupled simulations of the atmosphere and the ocean or even complete earth simulations.

Same architecture — only smaller and more effective

“Currently there is no other platform that is able to run calculations of that kind in a comparable short time — even though there are machines capable of more output according to the available data,” says Dr. Sébastien Masson from L’Institut Pierre-Simon Laplace (IPSL) in Paris, France. For his climate models, he has been using the Earth Simulator for a long time now — not least because the interaction between hardware and software works out perfectly well. Another key aspect is the possibility of running coupled models. That means complicated ocean models, complex land models, and also climate models can be simultaneously simulated and then brought together.

“The Earth Simulator is almost identical in construction with the SX 6 machine we are using in Hamburg,” says Michael Böttinger, who is responsible for the application software at the German Climate Computing Centre (DKRZ). “Except the vector architecture is 25 times bigger than ours.” Its architecture is one of the key benefits of the Earth Simulator. The computer simulation of natural occurrences and the calculation of natural catastrophes and their climate impact require increasing processing power.

Vector processors — with their strong single processor performance associated with a very high bandwidth to the main memory — are particularly effective at meeting the special demands of computing in earth sciences. Clusters of vector computers have the advantage of using a mixture of both MPI and OpenMP with extremely strong SMP nodes. As an example of how well these codes map to the vector architecture, the AFES climate model delivers up to 60 percent of the Earth Simulator’s peak performance.

Since the first successful numerical weather forecast in 1950, the world has changed dramatically. With the increase of unusual weather events, computational meteorology has taken over a new role in assessing the future changes of the environment rather than solely forecasting tomorrow’s weather. Society recognizes the value of investing in these kinds of supercomputer systems and in their utilization. This support is evidenced by the scheduled reinstallation of the Earth Simulator.

“Oceans with their complex biological interaction play a key role in climate research, producing 50 percent of the oxygen and storing one third of the atmospheric CO2,” explains Dr. Onno Groß, marine biologist and founder of the Ocean Protection Organisation DEEPWAVE. “But the temperature change and the acidification of the sea by exhaust emissions threaten their organisms. The impact of these changes can only be made graspable with supercomputers like the Earth Simulator.”

Thanks to enhancements, the new computer allows extended applications, like cloud resolving physics and ensemble studies. Exact high-speed analysis is enabled, and with that even more precise forecasts for worldwide environmental phenomena are possible. Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures and rising global average sea level. However, with adequate adaptation and mitigation strategies associated with emission reduction concepts, scientists can provide guidance to try to minimize the impact to ecosystems and human society. Systems like the Earth Simulator will play a key role in defining and evaluating these strategies and scenarios. Neither emission reduction nor adaptation will avoid all climate change impacts, but together they can reduce the risks of climate change.

Looking Ahead

Another supercomputer is also being constructed in Japan. The RIKEN Institute (Institute of Physical and Chemical Research) is developing a 10 petaflop system. The enormous increase in processing power in the HPC-area shows the impressive book of supercomputing is never going to end.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at [email protected] or visit the Web sites: http://laengsynt.de and http://netzwelt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This