A Tribute to the Earth Simulator

By Markus Henkel

July 8, 2008

The Earth Simulator is a legend in computational meteorology and long-term climate simulations. For years it has been one of the fastest supercomputers, designed to evaluate the effects of global warming and problems in solid earth geophysics. In 2009, a comprehensive upgrade of the Earth Simulator will begin a new era for the history-making supercomputer.

For six years, the Earth Simulator has been a constant in the twice-yearly TOP500 list of the most powerful supercomputers. Currently ranked in 49th place, a significant enhancement is scheduled. A new and comprehensive reinstallation is underway to enable researchers to conduct enhanced climate simulations to produce results that are beyond the scope of any other computing system.

Again the NEC Corporation in Japan, responsible for the original version in 2002, is assigned to deliver the upgraded Earth Simulator. This new mega-simulator is being installed in the Japanese research centre JAMSTEC (Japan Agency for Marine-Earth Science and Technology) and is destined to help scientists find answers to mitigate the impact of global climate change on the earth’s ecosystems. With a maximum processing power of 131 teraflops (131 billion arithmetic operations per second), a planned special SX-9-series will be able to accomplish so-called ultra-high-speed simulations in real time.

Until the new system is installed in 2009, the current Earth Simulator will continue to work on unique scientific topics. Simulations of the global climate both in the atmosphere and in the oceans made the Earth Simulator the expert in assessing climatology issues and the most important contributor to the Fourth IPCC Assessment report in 2007. The need for continuing this effort is obvious. In the period from 1950 to 2005, a massive increase in major weather-related natural catastrophes was observed, and between 1994 and 2005 there were almost three times as many weather-related natural catastrophes as in the 1960s.

The beginning: The fastest computer in the world

It all started in 2002. The fastest computer in the world was installed at the Yokohama Institute for Earth Sciences (YES). Its 640 nodes, with 8 vector processors each, occupy 3,250 square meters. The system is based on the SX-6 architecture and consists of 5,120 CPUs, 10 terabytes of main storage, 700 terabytes of hard disc storage units and 1.6 petabytes of streamer storage. An unrivalled accomplishment back then, the system is still very much in use today, and not only by Japanese researchers. International collaborative projects with institutes in the US, France and UK have attained unique results.

At first Japan used the supercomputer for its own interests. In 1923 the Kanto earthquake killed 130,000 people and destroyed Tokyo and Yokohama. In addition to that, the birth rate rose explosively, forcing the government to pay much more attention to potential national catastrophes. Today, however, the Earth Simulator is in demand worldwide, helping to clarify problems associated with a global climate. This field has indeed become a global issue, as evidenced by recent deadly natural disasters, such as the Tsunami in 2004 and the latest earthquake in China, which killed hundreds of thousands of people.

One important aim of climate supercomputers is not only understanding incidents like earthquakes, but predicting them as early as possible. Another field of activity, which the original Earth Simulator is perfect for, is the realization of coupled simulations of the atmosphere and the ocean or even complete earth simulations.

Same architecture — only smaller and more effective

“Currently there is no other platform that is able to run calculations of that kind in a comparable short time — even though there are machines capable of more output according to the available data,” says Dr. Sébastien Masson from L’Institut Pierre-Simon Laplace (IPSL) in Paris, France. For his climate models, he has been using the Earth Simulator for a long time now — not least because the interaction between hardware and software works out perfectly well. Another key aspect is the possibility of running coupled models. That means complicated ocean models, complex land models, and also climate models can be simultaneously simulated and then brought together.

“The Earth Simulator is almost identical in construction with the SX 6 machine we are using in Hamburg,” says Michael Böttinger, who is responsible for the application software at the German Climate Computing Centre (DKRZ). “Except the vector architecture is 25 times bigger than ours.” Its architecture is one of the key benefits of the Earth Simulator. The computer simulation of natural occurrences and the calculation of natural catastrophes and their climate impact require increasing processing power.

Vector processors — with their strong single processor performance associated with a very high bandwidth to the main memory — are particularly effective at meeting the special demands of computing in earth sciences. Clusters of vector computers have the advantage of using a mixture of both MPI and OpenMP with extremely strong SMP nodes. As an example of how well these codes map to the vector architecture, the AFES climate model delivers up to 60 percent of the Earth Simulator’s peak performance.

Since the first successful numerical weather forecast in 1950, the world has changed dramatically. With the increase of unusual weather events, computational meteorology has taken over a new role in assessing the future changes of the environment rather than solely forecasting tomorrow’s weather. Society recognizes the value of investing in these kinds of supercomputer systems and in their utilization. This support is evidenced by the scheduled reinstallation of the Earth Simulator.

“Oceans with their complex biological interaction play a key role in climate research, producing 50 percent of the oxygen and storing one third of the atmospheric CO2,” explains Dr. Onno Groß, marine biologist and founder of the Ocean Protection Organisation DEEPWAVE. “But the temperature change and the acidification of the sea by exhaust emissions threaten their organisms. The impact of these changes can only be made graspable with supercomputers like the Earth Simulator.”

Thanks to enhancements, the new computer allows extended applications, like cloud resolving physics and ensemble studies. Exact high-speed analysis is enabled, and with that even more precise forecasts for worldwide environmental phenomena are possible. Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures and rising global average sea level. However, with adequate adaptation and mitigation strategies associated with emission reduction concepts, scientists can provide guidance to try to minimize the impact to ecosystems and human society. Systems like the Earth Simulator will play a key role in defining and evaluating these strategies and scenarios. Neither emission reduction nor adaptation will avoid all climate change impacts, but together they can reduce the risks of climate change.

Looking Ahead

Another supercomputer is also being constructed in Japan. The RIKEN Institute (Institute of Physical and Chemical Research) is developing a 10 petaflop system. The enormous increase in processing power in the HPC-area shows the impressive book of supercomputing is never going to end.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at [email protected] or visit the Web sites: http://laengsynt.de and http://netzwelt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This