A Tribute to the Earth Simulator

By Markus Henkel

July 8, 2008

The Earth Simulator is a legend in computational meteorology and long-term climate simulations. For years it has been one of the fastest supercomputers, designed to evaluate the effects of global warming and problems in solid earth geophysics. In 2009, a comprehensive upgrade of the Earth Simulator will begin a new era for the history-making supercomputer.

For six years, the Earth Simulator has been a constant in the twice-yearly TOP500 list of the most powerful supercomputers. Currently ranked in 49th place, a significant enhancement is scheduled. A new and comprehensive reinstallation is underway to enable researchers to conduct enhanced climate simulations to produce results that are beyond the scope of any other computing system.

Again the NEC Corporation in Japan, responsible for the original version in 2002, is assigned to deliver the upgraded Earth Simulator. This new mega-simulator is being installed in the Japanese research centre JAMSTEC (Japan Agency for Marine-Earth Science and Technology) and is destined to help scientists find answers to mitigate the impact of global climate change on the earth’s ecosystems. With a maximum processing power of 131 teraflops (131 billion arithmetic operations per second), a planned special SX-9-series will be able to accomplish so-called ultra-high-speed simulations in real time.

Until the new system is installed in 2009, the current Earth Simulator will continue to work on unique scientific topics. Simulations of the global climate both in the atmosphere and in the oceans made the Earth Simulator the expert in assessing climatology issues and the most important contributor to the Fourth IPCC Assessment report in 2007. The need for continuing this effort is obvious. In the period from 1950 to 2005, a massive increase in major weather-related natural catastrophes was observed, and between 1994 and 2005 there were almost three times as many weather-related natural catastrophes as in the 1960s.

The beginning: The fastest computer in the world

It all started in 2002. The fastest computer in the world was installed at the Yokohama Institute for Earth Sciences (YES). Its 640 nodes, with 8 vector processors each, occupy 3,250 square meters. The system is based on the SX-6 architecture and consists of 5,120 CPUs, 10 terabytes of main storage, 700 terabytes of hard disc storage units and 1.6 petabytes of streamer storage. An unrivalled accomplishment back then, the system is still very much in use today, and not only by Japanese researchers. International collaborative projects with institutes in the US, France and UK have attained unique results.

At first Japan used the supercomputer for its own interests. In 1923 the Kanto earthquake killed 130,000 people and destroyed Tokyo and Yokohama. In addition to that, the birth rate rose explosively, forcing the government to pay much more attention to potential national catastrophes. Today, however, the Earth Simulator is in demand worldwide, helping to clarify problems associated with a global climate. This field has indeed become a global issue, as evidenced by recent deadly natural disasters, such as the Tsunami in 2004 and the latest earthquake in China, which killed hundreds of thousands of people.

One important aim of climate supercomputers is not only understanding incidents like earthquakes, but predicting them as early as possible. Another field of activity, which the original Earth Simulator is perfect for, is the realization of coupled simulations of the atmosphere and the ocean or even complete earth simulations.

Same architecture — only smaller and more effective

“Currently there is no other platform that is able to run calculations of that kind in a comparable short time — even though there are machines capable of more output according to the available data,” says Dr. Sébastien Masson from L’Institut Pierre-Simon Laplace (IPSL) in Paris, France. For his climate models, he has been using the Earth Simulator for a long time now — not least because the interaction between hardware and software works out perfectly well. Another key aspect is the possibility of running coupled models. That means complicated ocean models, complex land models, and also climate models can be simultaneously simulated and then brought together.

“The Earth Simulator is almost identical in construction with the SX 6 machine we are using in Hamburg,” says Michael Böttinger, who is responsible for the application software at the German Climate Computing Centre (DKRZ). “Except the vector architecture is 25 times bigger than ours.” Its architecture is one of the key benefits of the Earth Simulator. The computer simulation of natural occurrences and the calculation of natural catastrophes and their climate impact require increasing processing power.

Vector processors — with their strong single processor performance associated with a very high bandwidth to the main memory — are particularly effective at meeting the special demands of computing in earth sciences. Clusters of vector computers have the advantage of using a mixture of both MPI and OpenMP with extremely strong SMP nodes. As an example of how well these codes map to the vector architecture, the AFES climate model delivers up to 60 percent of the Earth Simulator’s peak performance.

Since the first successful numerical weather forecast in 1950, the world has changed dramatically. With the increase of unusual weather events, computational meteorology has taken over a new role in assessing the future changes of the environment rather than solely forecasting tomorrow’s weather. Society recognizes the value of investing in these kinds of supercomputer systems and in their utilization. This support is evidenced by the scheduled reinstallation of the Earth Simulator.

“Oceans with their complex biological interaction play a key role in climate research, producing 50 percent of the oxygen and storing one third of the atmospheric CO2,” explains Dr. Onno Groß, marine biologist and founder of the Ocean Protection Organisation DEEPWAVE. “But the temperature change and the acidification of the sea by exhaust emissions threaten their organisms. The impact of these changes can only be made graspable with supercomputers like the Earth Simulator.”

Thanks to enhancements, the new computer allows extended applications, like cloud resolving physics and ensemble studies. Exact high-speed analysis is enabled, and with that even more precise forecasts for worldwide environmental phenomena are possible. Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures and rising global average sea level. However, with adequate adaptation and mitigation strategies associated with emission reduction concepts, scientists can provide guidance to try to minimize the impact to ecosystems and human society. Systems like the Earth Simulator will play a key role in defining and evaluating these strategies and scenarios. Neither emission reduction nor adaptation will avoid all climate change impacts, but together they can reduce the risks of climate change.

Looking Ahead

Another supercomputer is also being constructed in Japan. The RIKEN Institute (Institute of Physical and Chemical Research) is developing a 10 petaflop system. The enormous increase in processing power in the HPC-area shows the impressive book of supercomputing is never going to end.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at [email protected] or visit the Web sites: http://laengsynt.de and http://netzwelt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire