Purpose-Built Supercomputing

By Michael Feldman

July 9, 2008

In HPC, there has always been a tension between general-purpose and special-purpose architectures. That tension reflects two facets of the market: to apply HPC to more application domains and more users, and to increase performance for the most demanding applications. With a sort of schizophrenic behavior, HPC exploits Moore’s Law’s for all it’s worth, and then, unsatisfied, tries to find a way to beat it.

In the early days of supercomputing, special-purpose silicon dominated the industry, exemplified by the custom-built vector machines from Cray and NEC. But by the 1990s, the “attack of the killer micros” ushered in the era of general-purpose CPUs, specifically the x86 franchise. Because of the favorable hardware and software economics offered by general-purpose hardware, many people thought this model would go on forever. Now there are some indications it won’t.

By incorporating a few thousand souped-up game chips into its design, the IBM Roadrunner demonstrated how a far and how fast an architecture can leap over its brethren. Using the latest Cell processors, IBM was able to reach a petaflop in Linpack performance before any of the competition, not to mention the company’s own PowerPC-based Blue Gene. Today there are plans afoot to build other high-end supercomputers using the latest GPU chips from NVIDIA. And although both Cell and GPU processors are specialized, they are derived from chips that are used in commodity gaming systems. Thus they retain some of the volume production advantages of general-purpose CPUs, if not the software advantages.

But to squeeze even more application performance from silicon, one must resort to true custom designs. Perhaps the most extreme example of this approach is Japan’s latest MDGRAPE supercomputer built by RIKEN. The system was not built for general-purpose computing. It was designed specifically to perform molecular dynamics simulations, especially for protein structure prediction and the development of new drugs. Using 4808 custom MDGRAPE-3 processors, that machine reportedly achieved a petaflop two years before the IBM Roadrunner did. But since it wasn’t a Linpack petaflop it didn’t count in the TOP500 supercomputer tally.

At the end of 2008, a U.S. based firm, D.E. Shaw and Company, is scheduled to complete the development of another custom-built supercomputer for molecular dynamics (MD). The project is headed by David E. Shaw, a computer scientist who made his fortune on Wall Street as a quantitative trader. The new MD machine, called “Anton” (after the legendary microbiologist Anton van Leeuwenhoek), incorporates 512 custom-built ASICs hooked together by a high-speed communication network. The system is designed to execute millisecond-scale MD simulations.

The millisecond scale is the important feature since it represents at least a thousand-fold increase in the timescale of MD simulations currently being carried out on supercomputers. It will allow researchers to get a much better sense of protein folding behavior and other biochemical interactions. Specifically, it should give scientists a much more powerful tool for understanding disease mechanisms and for developing new drugs.

But will a custom-built design be worth it, even for specific applications with a lot of science and potentially, commercial worth, riding on the results? In an ACM article which describes Anton, the researchers offer their rationalization for the approach:

A natural question is whether a specialized machine for molecular simulation can gain a significant performance advantage over general-purpose hardware. After all, history is littered with the corpses of specialized machines, spanning a huge gamut from Lisp machines to database accelerators. Performance and transistor count gains predicted by Moore’s law, together with the economies of scale behind the development of commodity processors, have driven a history of general-purpose microprocessors outpacing special-purpose solutions. Any plan to build specialized hardware must account for the expected exponential growth in the capabilities of general-purpose hardware.

We concluded that special-purpose hardware is warranted in this case because it leads to a much greater improvement in absolute performance than the expected speedup predicted by Moore’s law over our development time period, and because we are currently at the cusp of simulating timescales of great biological significance. We expect Anton to run simulations over 1000 times faster than was possible when we began this project. Assuming that transistor densities continue to double every 18 months and that these increases translate into proportionally faster processors and communication links, one would expect approximately a tenfold improvement in commodity solutions over the five-year development time of our machine (from conceptualization to bring-up). We therefore expect that a specialized solution will be able to access biologically critical millisecond timescales significantly sooner than commodity hardware.

A custom-built approach is also being undertaken by researchers at Berkeley Lab who are designing a multi-petaflop supercomputer for next generation climate modeling. In this case though, they’re attempting to exploit commodity technology from the embedded computing space. Because of power and hardware limitations, the Berkeley guys believe it will not even be possible to construct practical general-purpose machines as computing approaches the exascale level. If true, special-purpose architectures will not just be an alternative approach, it will be the only way forward.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire