IBM Sees Blue Gene Adoption Growing

By By Michael Feldman

August 7, 2008

IBM's Blue Gene technology has received some notable attention lately — especially internationally. Last month, Germany and Japan announced separate deployments of Blue Gene/L systems. Both deployments now represent the highest performing supercomputer systems in their respective countries. Although the timing may have been a coincidence, IBM views these events as part of a growing acceptance of Blue Gene to solve a wider range of high performance computing problems.

Simulating Quarks and Gluons

At Japan's Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK), they have deployed ten racks of Blue Gene/L technology, configured into three separate systems, with an aggregate peak performance of 57.3 teraflops.

By breaking the Blue Gene racks up into three systems, KEK identified the three-system configuration as the best approach to perform the types of particle physics simulation calculations they have in mind. The calculations at KEK require changes in parameters for each simulation and they simultaneously run massive number of simulations with those different parameters.

KEK's use of supercomputers has allowed significant achievements in high-energy accelerator science, especially in simulating the dynamics of quarks and gluons, the elementary components of matter. KEK's research into the underlying secrets of nature, including the origin of the universe and matter, requires large-scale numerical simulation and a dramatic increase in computing power.

“As our research in the areas of theoretical high energy physics continues to evolve, the need for computing power is ever greater,” said Ph.D. Shoji Hashimoto, an associate professor, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization. “IBM's Blue Gene is the ideal system to offer our institute performance levels that will allow areas of scientific discovery that were previously unattainable.”

Scientific Research for Europe

Meanwhile, the German Research Center Juelich, one of the three high-profile German supercomputing centers, inaugurated a newly deployed Blue Gene system as the most powerful supercomputer in Europe.

The system joins an existing 8.9 teraflop supercomputer at Research Center Juelich that is also based on IBM POWER architecture technology.  This dual supercomputer system offers the capacity to fulfill the varying needs of the scientific user community. In addition to the two supercomputers, Juelich's ability to support researchers in methodology, fast algorithms and program efficiency is another important aspect of the center's infrastructure.

The Juelich Blue Gene/L installation will offer a peak performance of 45.8 teraflops and a sustained performance of 36.5 teraflops. Juelich originally had one Blue Gene rack. In this latest deployment they added seven more, connecting them together into an eight-rack system.

The Juelich installation will be used for the most compute intensive research tasks of German and European scientists. Serving as a virtual laboratory, the system will be used for scientific discovery in areas such as particle physics, material sciences, life sciences and environmental research. For example, it will be used to simulate the diffusion of harmful materials in soil and in the atmosphere.

“The request for compute time will go up by a factor of one thousand in the next five years,” predicts Prof. Joachim Treusch, chairman of the board of the Research Center Juelich. “Therefore we will extend our core competency in the area of supercomputing massively in the future.”

“The IBM Blue Gene architecture has proven to be highly attractive to researchers,” said Nurcan Rasig, director of Supercomputing Solutions at IBM in Germany. “The conception of this computer type is especially suitable for capability computing, as high performance and excellent scaling are possible. This is an important feature for getting new scientific results that cannot be reached by conventional HPC clusters.”

The Blue Gene Approach

Herb Schultz, Blue Gene General Manager at IBM, would agree with that assessment. According to him, when you look at the current technology in commodity components, it's just not practical to use them to build multi-hundred teraflop HPC systems.

“There's a physical practical limit to how big systems can get using certain types of technology, says Schultz. “You can't just put 50,000 blades together and make this big system — you don't have the space, you don't have the power, etc.”

He says that the real advantages of the Blue Gene technology is that it has very favorable price/performance and performance/watt characteristics and it was designed to scale extremely well. But to make it commercially viable it had to be built from relatively modestly priced components — PowerPC 440 processors at a conservative 700 MHz clock speed. The relatively low amount of power required for this chip allowed IBM to pack a lot of them close together. Each Blue Gene rack contains 1024 dual-processor nodes.

“It can scale very well,” says Schultz. “We went from 70 teraflops, and six months later doubled it, and then doubled it again. And if someone with enough money wanted to double it again and build a 128-rack system, they could.”

According the Schultz, beyond 128 racks, you're starting to reach the architectural limits of the current technology. But in the future, IBM intends to improve the technology so that you can get a petaflop in roughly the same footprint as the current 64-rack Blue Gene system at Lawrence Livermore National Laboratory (LLNL). IBM's R&D PERCS program, described in last week's issue of HPCwire (http://www.hpcwire.com/hpc/614724.html), is another possible avenue to reach petascale systems. But whether PERCS employs Blue Gene technology or goes in a different direction is still an open question.

Applications Catching Up

But before that happens, today's applications need to take advantage of the current level of Blue Gene technology. Developers are working hard to unleash the performance in current systems and, according to Schultz, this is starting to happen. After more than a year in commercial production, the Blue Gene ecosystem has begun to mature. Specifically, more applications are being ported to the architecture, attracting a wider range of users.

Schultz says it was the middle of last year that people were proving to themselves that the Blue Gene technology was suitable for their applications and would allow their codes to scale. This encouraged customers with one- or two-rack systems to consider scaling up their hardware.

The Blue Gene architecture was initially designed in collaboration with LLNL for their nuclear weapons analysis mission. But over the past year and a half, applications supporting astronomy (radio telescopes), fluid dynamics (large eddy simulations) and biotechnology (genomics) have been successfully ported to Blue Gene.

“Now it's easier to prove the value of Blue Gene with something other than standard benchmarks,” says Schultz. “We're getting some real code ported and run. The scaling is very good. The performance is good. So I think people are starting to see that Blue Gene is now ready for a variety of applications besides the ones it was originally designed for — high energy physics codes for national laboratories.”

Blue Genes on Wall Street?

There's also been some interest in running financial codes (Monte Carlo techniques and options pricing models) on Blue Gene. In fact, on April 24th, IBM will be pitching this idea to the financial community, at the Linux on Wall Street conference (http://www.linuxonwallstreet.com). The company will present a keynote address at the conference that describes how Blue Gene technology can be applied to financial applications. IBM would like to to encourage some involvement from the Wall Street community so that more financial codes can be ported to the architecture.

Schultz says that when Blue Gene was conceived, IBM had no thoughts that the technology would be hosting financial applications. But a lot of these customers are grappling with very compute intense applications that need to be run in data centers with limited amounts of space, power, and cooling. Blade servers are the traditional solution, but Blue Gene systems can deliver more computing performance, using less power and space. And, according to Schultz, from an end user's point of view, Blue Gene looks like a Linux cluster.

Getting Up To Speed

One thing that has stimulated Blue Gene application porting is IBM's own Deep Computing Capacity On Demand (DCCOD) Center.  This has enabled users to get access to the technology without having to purchase a system — an expensive proposition, since a single Blue Gene rack costs over a million dollars!

The DCCOD center allows users to borrow Blue Gene cycles on machines owned and maintained by IBM. It has provided an avenue to the technology for two important groups: (1) ISVs, so that they can research and develop key applications for Blue Gene and (2) End users, who can trial and scale their custom applications on the technology before committing to a system purchase. Schultz believes the DCCOD Center has been invaluble in enabling developers to get experience with Blue Gene technology.

“This was one of our original challenges,” says Schultz. When you have a big system like this and the smallest thing you [sell] is 1024 nodes, how can you get people access to it? The On Demand Center gives people that access.”

Apart from the DCCOD, some users can also get access to government-owned Blue Gene systems, where the owners have been mandated to loan out some of their cycles.

An Elite Market

No matter how many applications end up on Blue Gene, it will never be a general-purpose high performance computer. Nor was it intended to be. Blue Gene inhabits the rarified atmosphere of the HPC capability market, defined by IDC as supercomputers costing over $1 million. This market has had flat or declining revenues for several years.

“I have no reason to believe that the trajectory is going to change,” says Schultz. “But I do think that Blue Gene's share of that space will get bigger.”

Schultz admits that trying to position something like Blue Gene in the marketplace is always a challenge. Why would someone want to buy this? You can talk about its scalability, its number one performance ranking, its power/cooling efficiency, etc. But those are just attributes. According to Schultz, the awareness that's starting to emerge is that it solves problems that couldn't be solved before.

“There are a lot of customers out there with really big problems that are just waiting for the solution to come along,” says Schultz. “That's our customer base — those who really want to move ahead advancing their science.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This