HPC Simulations Help Researchers Develop Artificial Sniffer Technology

By Carmen L. Bright

August 27, 2008

From law enforcement to cancer detection, the uncanny ability of dogs to sniff out the earliest signs of danger and disease is receiving ever-increasing attention by researchers — with good reason.

Despite tremendous advances in law enforcement technology, there is still no man-made tool that can detect the presence of explosives quite like a canine’s sophisticated sniffing system. Some experts believe it exceeds the human sense of smell by a factor of at least 10,000 and possibly as much as 100,000. Even in today’s high-tech world, trained dogs are still the best bomb detectors.

In the medical arena, dogs have shown an ability to detect some cancers at their earliest stages, when the possibility for cure is highest. Some studies have documented the ability of dogs to distinguish people with cancers from healthy controls through sniffing their breath or skin with an accuracy between 88 percent and 97 percent.

“The dog’s nose is the gold standard for chemical trace detection,” explains Brent Craven, a researcher with the Gas Dynamics Lab and the Applied Research Lab at Penn State University. Craven and his team, which includes Drs. Gary Settles and Eric Paterson of the Mechanical Engineering Department, are using computer models to study the canine sense of smell to help develop ‘artificial sniffer’ technologies.

“We are trying to figure out what specifically makes dogs so efficient in this area,” says Craven. He has been analyzing the internal aerodynamics and transport phenomena in the canine nose using computational fluid dynamics (CFD). Large parallel simulations on high-performance computers at Penn State with AcuSolve (ACUSIM Software, Inc.) CFD software yield terabytes of data. One challenge has been the inability of visualization software to handle the very large models required for this study.
Artificial Sniffer Technology

“The complexity of the dog’s nose rivals the human lung with its many different branching airways, and it’s essential that we understand exactly how it functions,” says Craven. “Constructing a 3D virtual computer model and running simulations with such a complicated model can require nearly a 100 million cells — not all CFD visualization software can handle such a large data set.”

To meet that challenge, Craven and other researchers at Penn State turned to EnSight Gold scientific visualization software from Computational Engineering International, Inc. The software supports very large models that contain millions or billions of nodes, providing intensive parallel processing and rendering capabilities for applications such as airflow animation. Researchers also used Python scripts to automate the data analysis and visualization.

His artificial sniffer project began three years ago with high-resolution MRI scans of a cadaver dog. Craven then reconstructed those into a virtual computer model of a canine nose and, using experimental sniffing data from live dogs, was able to simulate the airflow through it. The model can steadily inspire, expire, or sniff, so Craven can analyze the fluid dynamics of trace detection in nature’s best sniffer.

“One of the questions we are trying to answer is why dogs sniff so fast,” says Craven. Using the visualization software, they are able to analyze simulation results of their model of a Labrador retriever sniffing at 5 Hz (5 sniffs per second), the nominal sniff frequency of a dog that size. The eventual goal is to create a complete virtual dog’s nose, complete with virtual scent receptors that are located in the back of the nose.

The computer model is able to show the role of the various anatomical structures of the canine nose in respiration and olfaction. These include the nasal vestibule, which filters and distributes inspired air within the nasal cavity, and directs an expired air jet; the respiratory airways, which filter, warm/cool, humidify inspired air, and dehumidify expired air; and the olfactory airways, where chemical trace detection occurs.

Craven credits a multi-disciplinary team involving several universities for the success they have had, including anatomy and physiology faculty Drs. Ed Morrison and Eleanor Josephson from the University of Auburn, bioengineering professor Andrew Webb and Dr. Thomas Neuberger at Penn State, and mechanical engineering faculty Drs. Gary Settles and Eric Paterson. “The scope of the sniffer project encompasses many areas of science and engineering, from anatomy, biology, and even neuroscience to bioengineering, mechanical engineering and chemical engineering,” he explains. “Our modeling and rendering techniques are drawing the interest of researchers in many of these different fields.”

Craven and his colleagues recently published some of their results in the November 2007 issue of The Anatomical Record in an article titled “Reconstruction and Morphometric Analysis of the Nasal Airway of the Dog (Canis familiaris) and Implications Regarding Olfactory Airflow.” Their future efforts are focused on incorporating nostril motion, vapor and particle deposition, and receptor models into their virtual dog’s nose. Experimental validation (MRI velocimetry) of these efforts is also under way.

The ultimate goal of creating an efficient artificial sniffer is not to replace dogs, says Craven, but to complement them in a broad range of applications such as cancer detection, explosives detection, search and rescue, drug interdiction, as well as military applications.

In fact, the Defense Advanced Research Projects Agency is encouraging research organizations with expertise to participate in its new “RealNose” program, designed to build an artificial nose based on the actual olfactory receptors of a real dog that can smell a wide range of chemicals with the same accuracy and reliability.

“There is tremendous potential for artificial sniffer technology. They can be handheld, like ‘dustbusters,’ or they can be mounted on robots for mobility to go out and search for trace chemicals,” Craven says. “As engineers, we can certainly design an artificial nose, but advances in simulation and visualization technology are now making it possible for us to analyze the real thing and to create a true biomimetic design.”

About the Author
 
Carmen L. Bright is a freelance writer and marketing consultant specializing in high-technology business communications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This