Cray Unveils New Cooling Technology For the Petascale Era

By Michael Feldman

August 28, 2008

Cray, known for its power and packaging prowess since 1976, when Seymour Cray bent the Cray-1 into a “C” shape, is unveiling a petascale-era cooling technology it says is more than 10 times as efficient as same-size water coils. Cray CTO Steve Scott discusses this innovation and the company that was green before green was cool.

HPCwire: What is Cray’s new cooling technology?

Scott: We call it ECOphlex technology. The “phlex” part refers to multiple things. First, the cabinet infrastructure can use either Cray’s high-efficiency vertical air cooling or our new phase change cooling technology that converts an inert refrigerant, R134a, from a liquid to a gas. The other flexibility is that the liquid-cooled systems can use various chilled or unchilled datacenter water temperatures to pull heat from the R134a subsystem and to adapt to changing datacenter conditions. The phase change coil is more than 10 times as efficient at removing heat from the compute cabinets as a water coil of similar size, so the in-cabinet cooling system is much smaller and lighter than it would be with water coils. Water is only used in external heat-exchange units.

The ECOphlex technology is the first of the Cray “Baker” technologies we’re introducing. We’ll start using it when we ship the Cray XT5 petascale system to Oak Ridge later this year. After that, all Cray XT5 systems will ship with ECOphlex capability in the new high-efficiency cabinet.

HPCwire: With system sizes and densities increasing, liquid cooling is making headlines as if it were something new, but Cray’s been at this a long time.

Scott: We’ve implemented six different types of liquid cooling since 1976, along with multiple air-cooled implementations. The Cray-1 used Freon with copper cold plates. Then we moved to fluorinert immersion, captive fluorinert cold plates, water cap cooling on the MTA-2, spray evaporative cooling on the X1, a water-cooled radiator on the X2, and the phase change liquid cooling on the XT5 series. We’ve gained a lot of experience with what forms of liquid cooling work best under various constraints.

HPCwire: How does your phase change cooling compare with the typical chilled water scenario datacenters use today?

Scott: Typically today, the computers put the heat into the air, and then the CRAC [Computer Room Air Conditioner] units around the room periphery have to remove the heat from the air and put it into the chilled water. This method is very inefficient. For a petascale system the area taken up by the CRAC units could exceed the computer footprint, and this would also waste a lot of power. Cray’s new cooling scheme puts the heat into a refrigerant stream inside the rack, and then sends it to an Extreme Density Pumping unit that efficiently transfers the heat to the building chilled water. So, you still use chilled water, but it’s much less extensive and it doesn’t intrude on the computational components of the system.

ECOphlex technology is designed to be “room air neutral” within plus or minus 10%. We’ve demonstrated the ability to remove up to 100 kilowatts from a single cabinet. A typical installation would be configured with just a few CRAC units for humidity control or to deal with some leaking from other devices. The ECOphlex technology requires only a small temperature delta in the water supply, so in cooler climates or where datacenters can run at warmer ambient room temperatures, there is the potential to completely eliminate the need for expensive water chillers.

Another advantage is that since ECOphlex uses an inert coolant, you don’t have to worry about water leakage or condensation that could damage electronic components. As you know, this can be a severe problem with intrusive water-cooling technologies that bring the water-cooling close to heat-generating computer components.

HPCwire: HPC vendors have been working to advance system densities and power and cooling abilities since the start of the supercomputing era. What’s changed lately?

Scott: Supercomputing began in an era of cheap electicity. When Seymour Cray bent the Cray-1 into a “C” shape and cooled it with Freon and copper cold plates, the goal was to improve performance. Today, when Cray and other HPC vendors improve densities and power and cooling technologies, it’s not just to boost performance. It’s also for environmental reasons. We’re trying to help customers save on very expensive energy costs and facility space.

HPCwire: What about other approaches to reducing energy use and heat generation, such as using lower-power processors or accelerators?
 
Scott: There are two basic approaches. In the first, you drop the voltage and lower the frequency of individual processors, then compensate by using more processors in a system. Multi-core processors embody this approach to a moderate extent, and some special purpose designs have taken it even farther. The primary concern here is that this approach exacerbates the scaling problem. The memory wall gets worse, there’s more memory contention, codes have to be more parallel, the communication-to-computation ratio gets worse, and you have to depend more on locality. This approach works well for highly localized, partitionable applications. The more you push this concept, however, the more potential power savings you have for certain codes, but the more special-purpose the machine becomes.

Another alternative is to design processors that have much lower control overhead and use more of their silicon area for performing computations. Streaming processors, vector processors and FPGAs are examples of this approach, which can result in much faster single processors for the right types of codes, and thus ease the requirement for greater scaling. This technique can be used to a lesser extent in traditional scalar microprocessors. SSE instructions, for example, are essentially vector instructions that can increase peak performance without a corresponding increase in control complexity. On top of all this, you can also implement adaptive power-management mechanisms to reduce power consumption by idling or voltage scaling selected blocks of logic in the processor. Microprocessor vendors have a big motive to reduce power consumption because it affects their whole market, not just the relatively small HPC segment.

HPCwire: So which techniques do you think hold the most promise?

Scott: I don’t think there’s one right answer. Ultimately, the important thing is matching the capabilities of the machine with the needs of the applications. The variety of applications calls for a variety of solutions, each optimized for the right system balance. This will lead to more performance efficiency and power efficiency. What you don’t want to do is compromise application performance. In the end, it’s watts per sustained performance that matters, not watts per peak performance.

HPCwire: Are there any other important aspects of Green HPC?

Scott: Yes. Another really important dimension is equipment disposal, though this one doesn’t get as much attention as power and cooling. In many cases, buying a new supercomputer today requires a forklift upgrade of the cabinets. This is true of some of the most efficient systems on the Green500 list, which just looks at kilowatts per flop. Recycling cabinets every two to three years, or trucking them to a landfill, isn’t very environmentally friendly and can cost extra money for the customer on both the initial system purchase and the disposal. Cray has been using multi-generational cabinets with our XT series, and many of our customers have already gone through two or three processor upgrades in the same cabinets. Our new high-efficiency cabinet continues this practice.

Another important factor is power efficiency inside the cabinet. Since the Cray XT3, we’ve been using a single axial turbofan in our cabinets. It’s a lot more efficient than a large collection of less-powerful fans and the maintenance interval is seven-and-a-half years, versus a few months with the small fans.

We’re also using AC/DC power rectification with a 90%-plus efficiency rating. There’s much less power loss with these power supplies, and they can support higher-power processors.

HPCwire: Any parting thoughts?

Scott: Just that as the HPC community begins to enter the petascale computing era, the challenge of cooling large-scale systems and paying for the energy costs is escalating very quickly. Cray and every other vendor serving this market will need to push “green” innovation hard to stay ahead of this curve for customers. We’re fortunate at Cray to have a long history of power, cooling and packaging innovation, and we’re committed to do what it takes, in cooling and other areas, to enable our customers to get to sustained petascale computing capabilites.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This