Cray Unveils New Cooling Technology For the Petascale Era

By Michael Feldman

August 28, 2008

Cray, known for its power and packaging prowess since 1976, when Seymour Cray bent the Cray-1 into a “C” shape, is unveiling a petascale-era cooling technology it says is more than 10 times as efficient as same-size water coils. Cray CTO Steve Scott discusses this innovation and the company that was green before green was cool.

HPCwire: What is Cray’s new cooling technology?

Scott: We call it ECOphlex technology. The “phlex” part refers to multiple things. First, the cabinet infrastructure can use either Cray’s high-efficiency vertical air cooling or our new phase change cooling technology that converts an inert refrigerant, R134a, from a liquid to a gas. The other flexibility is that the liquid-cooled systems can use various chilled or unchilled datacenter water temperatures to pull heat from the R134a subsystem and to adapt to changing datacenter conditions. The phase change coil is more than 10 times as efficient at removing heat from the compute cabinets as a water coil of similar size, so the in-cabinet cooling system is much smaller and lighter than it would be with water coils. Water is only used in external heat-exchange units.

The ECOphlex technology is the first of the Cray “Baker” technologies we’re introducing. We’ll start using it when we ship the Cray XT5 petascale system to Oak Ridge later this year. After that, all Cray XT5 systems will ship with ECOphlex capability in the new high-efficiency cabinet.

HPCwire: With system sizes and densities increasing, liquid cooling is making headlines as if it were something new, but Cray’s been at this a long time.

Scott: We’ve implemented six different types of liquid cooling since 1976, along with multiple air-cooled implementations. The Cray-1 used Freon with copper cold plates. Then we moved to fluorinert immersion, captive fluorinert cold plates, water cap cooling on the MTA-2, spray evaporative cooling on the X1, a water-cooled radiator on the X2, and the phase change liquid cooling on the XT5 series. We’ve gained a lot of experience with what forms of liquid cooling work best under various constraints.

HPCwire: How does your phase change cooling compare with the typical chilled water scenario datacenters use today?

Scott: Typically today, the computers put the heat into the air, and then the CRAC [Computer Room Air Conditioner] units around the room periphery have to remove the heat from the air and put it into the chilled water. This method is very inefficient. For a petascale system the area taken up by the CRAC units could exceed the computer footprint, and this would also waste a lot of power. Cray’s new cooling scheme puts the heat into a refrigerant stream inside the rack, and then sends it to an Extreme Density Pumping unit that efficiently transfers the heat to the building chilled water. So, you still use chilled water, but it’s much less extensive and it doesn’t intrude on the computational components of the system.

ECOphlex technology is designed to be “room air neutral” within plus or minus 10%. We’ve demonstrated the ability to remove up to 100 kilowatts from a single cabinet. A typical installation would be configured with just a few CRAC units for humidity control or to deal with some leaking from other devices. The ECOphlex technology requires only a small temperature delta in the water supply, so in cooler climates or where datacenters can run at warmer ambient room temperatures, there is the potential to completely eliminate the need for expensive water chillers.

Another advantage is that since ECOphlex uses an inert coolant, you don’t have to worry about water leakage or condensation that could damage electronic components. As you know, this can be a severe problem with intrusive water-cooling technologies that bring the water-cooling close to heat-generating computer components.

HPCwire: HPC vendors have been working to advance system densities and power and cooling abilities since the start of the supercomputing era. What’s changed lately?

Scott: Supercomputing began in an era of cheap electicity. When Seymour Cray bent the Cray-1 into a “C” shape and cooled it with Freon and copper cold plates, the goal was to improve performance. Today, when Cray and other HPC vendors improve densities and power and cooling technologies, it’s not just to boost performance. It’s also for environmental reasons. We’re trying to help customers save on very expensive energy costs and facility space.

HPCwire: What about other approaches to reducing energy use and heat generation, such as using lower-power processors or accelerators?
 
Scott: There are two basic approaches. In the first, you drop the voltage and lower the frequency of individual processors, then compensate by using more processors in a system. Multi-core processors embody this approach to a moderate extent, and some special purpose designs have taken it even farther. The primary concern here is that this approach exacerbates the scaling problem. The memory wall gets worse, there’s more memory contention, codes have to be more parallel, the communication-to-computation ratio gets worse, and you have to depend more on locality. This approach works well for highly localized, partitionable applications. The more you push this concept, however, the more potential power savings you have for certain codes, but the more special-purpose the machine becomes.

Another alternative is to design processors that have much lower control overhead and use more of their silicon area for performing computations. Streaming processors, vector processors and FPGAs are examples of this approach, which can result in much faster single processors for the right types of codes, and thus ease the requirement for greater scaling. This technique can be used to a lesser extent in traditional scalar microprocessors. SSE instructions, for example, are essentially vector instructions that can increase peak performance without a corresponding increase in control complexity. On top of all this, you can also implement adaptive power-management mechanisms to reduce power consumption by idling or voltage scaling selected blocks of logic in the processor. Microprocessor vendors have a big motive to reduce power consumption because it affects their whole market, not just the relatively small HPC segment.

HPCwire: So which techniques do you think hold the most promise?

Scott: I don’t think there’s one right answer. Ultimately, the important thing is matching the capabilities of the machine with the needs of the applications. The variety of applications calls for a variety of solutions, each optimized for the right system balance. This will lead to more performance efficiency and power efficiency. What you don’t want to do is compromise application performance. In the end, it’s watts per sustained performance that matters, not watts per peak performance.

HPCwire: Are there any other important aspects of Green HPC?

Scott: Yes. Another really important dimension is equipment disposal, though this one doesn’t get as much attention as power and cooling. In many cases, buying a new supercomputer today requires a forklift upgrade of the cabinets. This is true of some of the most efficient systems on the Green500 list, which just looks at kilowatts per flop. Recycling cabinets every two to three years, or trucking them to a landfill, isn’t very environmentally friendly and can cost extra money for the customer on both the initial system purchase and the disposal. Cray has been using multi-generational cabinets with our XT series, and many of our customers have already gone through two or three processor upgrades in the same cabinets. Our new high-efficiency cabinet continues this practice.

Another important factor is power efficiency inside the cabinet. Since the Cray XT3, we’ve been using a single axial turbofan in our cabinets. It’s a lot more efficient than a large collection of less-powerful fans and the maintenance interval is seven-and-a-half years, versus a few months with the small fans.

We’re also using AC/DC power rectification with a 90%-plus efficiency rating. There’s much less power loss with these power supplies, and they can support higher-power processors.

HPCwire: Any parting thoughts?

Scott: Just that as the HPC community begins to enter the petascale computing era, the challenge of cooling large-scale systems and paying for the energy costs is escalating very quickly. Cray and every other vendor serving this market will need to push “green” innovation hard to stay ahead of this curve for customers. We’re fortunate at Cray to have a long history of power, cooling and packaging innovation, and we’re committed to do what it takes, in cooling and other areas, to enable our customers to get to sustained petascale computing capabilites.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire