Compilers and More: Parallel Programming Made Easy?

By Michael Wolfe

September 2, 2008

Look at all the current research projects aimed at exactly that: making parallel programming easy!

The NESL language aims to “make parallel programming easy and portable.” More precisely, its goal is to allow programmers “to write parallel code as concisely and clearly as sequential code, while achieving close to peak performance.”

Microsoft’s Parallel Computing Platform team aims to provide a runtime that provides support for parallelism, models, libraries and tools that “make it easy for developers to construct correct, efficient, maintainable and scalable parallel programs.”

The CxC (C by C) language has one-sided communication operations, “which makes parallel programming easy and efficient.”

My alma mater, the University of Illinois, has a new Universal Parallel Computing Research Center, whose goal is simply “Making parallel programming easy.” Marc Snir, the Computer Science Department head, said the goal for this effort is to “make ‘parallel programming’ synonymous with ‘programming’.”

The Parallel Computing Lab at the University of California at Berkeley has adopted the goal to “make it easy to write correct programs that run efficiently on manycore systems, and which scale as the number of cores doubles every two years.”

Intel’s Threaded Building Blocks (TBB) extends C++ for parallelism in an easy to use and efficient manner.

Tim Mattson (Intel) points out that in “our quest to find that perfect language to make parallel programming easy,” we have come up with an alarming array of parallel programming choices: MPI, OpenMP, Ct, HPF, TBB, Erlang, Shmem, Portals, ZPL, BSP, CHARM++, Cilk, Co-array Fortran, PVM, Pthreads, Windows threads, Tstreams, GA, Java, UPC, Titanium, Parlog, NESL, Split-C, and on and on.

Tim and I are colleagues on the OpenMP Language committee, which recently finalized the OpenMP 3.0 standard. OpenMP’s mission is to define a “portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications for platforms ranging from the desktop to the supercomputer.” Is simple even easier than easy?

Every time I see someone claiming they’ve come up with a method to make parallel programming easy, I can’t take them seriously. First, “making parallel programming easy” must be harder than “making programming easy,” and I don’t think we’ve reached that first milestone yet. Yes, I can (and do) knock off quick programs to search or compute something simple, but then I can knock off a quick project to build a bridge over the seasonal stream in our backyard, too. I wouldn’t trust that bridge to freeway traffic, and I wouldn’t trust that quick program to solve anyone else’s problem, either.

All this is folly. I agree with Andrew Tanenbaum, quoted at the June 2008 Usenix conference: “Sequential programming is really hard, and parallel programming is a step beyond that.” Yes, programming is really hard. Look at the programming effort it takes to produce a well-supported world-class application. If it were easy, Microsoft wouldn’t need legions of programmers to develop and support its software. If sequential programming were a solved problem, we wouldn’t have the relatively recent introductions of new and successful languages, such as Java, and C#.

Consider any software development project. Typically it begins with discussion of interfaces (with other software, with data, with users), standards (programming language, operating system, formats), and requirements (functionality and performance). Often, a prototype implementation is developed and tested. One of the tests will involve performance, especially at the limits of the expected input. If the performance is satisfactory, no further tuning is necessary. If not, the team will look at alternative implementations, different algorithms, data structures, shortcuts, etc.; one of the schemes will be to use more parallelism.

In fact, the ONLY reason to consider parallelism is for better performance. Parallelism by itself doesn’t deliver any new features or functionality; it may allow you to deliver new functionality because of improved performance, but the parallelism itself didn’t create the functionality. Most of the programs I write don’t need parallelism because they don’t take long enough to matter. Only those with large datasets or lots of computation are even candidates. I’d be wasting my time and my employer’s resources adding complexity to my program in order to use parallelism that I don’t need.

Moreover, parallelism does not equate to performance. The focus needs to be not on parallelism, but on performance, where parallelism is one of the tools to get it.

Time and again we hear advocates claiming that if you just use their compiler, language, library, tool, methodology, etc., they will guarantee good performance now and forevermore. Yet each time around, the methods are limited to the technology of the day. Let’s look at an example algorithm, matrix multiplication:

   for i in 1:n
     for j in 1:n
       for k in 1:n
         c(i,j) = c(i,j) + a(i,k)*b(k,j)

Early compilers were tuned to optimize just such programs. As pipelined functional units were introduced, libraries were written to replace the inner kernel loops, such as STACKLIB and the BLAS; we could write this loop using a DAXPY call:

   for j in 1:n
     for k in 1:n
       daxpy( n, b(k,j), a(1,k), 1, c(1,j), 1 )
       ! equivalent to:
       ! for i in 1:n
       !   c(i,j) = c(i,j) + b(k,j)*a(i,k)

The library routines were rewritten in vector mode in the 1970s. However, it was soon realized that you could achieve even higher vector performance, called supervector performance, if you optimized the inner two loops to take advantage of vector register locality. Thus came the level-2 BLAS, implementing matrix-vector operations. Matrix multiplication turned into a loop around a DGEMV call:

   for j in 1:n
     dgemv( ‘n’, n, n, 1.0, a(1,1), n, b(1,j), n, 1.0, c(1,j), 1 )
     ! equivalent to:
     ! for k in 1:n
     !   for i in 1:n
     !     c(i,j) = 1.0*c(i,j) + 1.0*b(k,j)*a(i,k)

This was sufficient until the microprocessor revolution, where cache behavior dominated the processor performance. We then were given the level-3 BLAS, implementing matrix multiplication in a single call to DGEMM, which could then be appropriately tiled, unrolled, vectorized, and optimized for each machine. Now we’re in the multicore or manycore era, and who knows where it will lead in the next decade or two? Given how well we’ve predicted what the machines of the future will look like, can we design the universal programming model today?

One aspect of computer science is algorithm analysis, studying the computational and memory requirements of an algorithm. We learn how to reverse a linked list in linear time and constant space. We learn about the differences between bubble sort (O(N^3)), quicksort (O(N log N) on average, easily parallelizable) and heapsort (O(N log N) worst case, and my personal favorite). We learn to pay attention to the hidden constants in the big-O notation, since the constant factor can dominate the computation cost for reasonable inputs; thus, O(N^3) is almost always worse than O(N^2), but O(N log N) with a small constant may be better than O(N) with a big constant, for the expected cases.

For instance, in compilers, no one ever uses the linear time algorithm for computing dominators, because the constant factor is too big. We learn that the analysis usually translates directly to the actual performance. And we learn tricks, like hash table lookup, to work around difficult performance problems. None of this depends on the particular programming language or processor; the von Neumann model has served us well.

Algorithm analysis for parallel computing studies parallelism models, such as Bulk Synchronous Parallel (BSP), Communicating Sequential Processes (CSP), Data-Flow, and so on. These models make assumptions about the cost (or lack thereof) for synchronization and communication. Until we have machines that implement these models more closely, we need to take into account the cost of the virtualization as well. It doesn’t matter how efficient an algorithm is in some abstract machine model if the implementation of the abstract model is itself expensive.

The current “parallelism crisis” can only be resolved by three things. First, we need to develop and, more importantly, teach a range of parallel algorithms. When we teach sorting, we take into account in-core vs. out-of-core, the cost of doing a comparison, and the cost of copying the data versus using indices. Different sort algorithms work better with different dataset characteristics. Similarly, we must teach a range of parallel algorithms, so a programmer knows what dataset and system characteristics will affect the performance, and hence the choice of algorithm.

Second, we need to expand algorithm analysis to include different parallelism styles. It’s not enough to focus on just the BSP or SIMD or any other model; we must understand several models and how they map onto the target systems. We’ve become lazy; the sequential von Neumann model has been sufficiently universal that we think we can use a single model to cover all computing. Yes, this sounds like work, and it sounds like we’re going to have to think for a living.

Finally, we need to learn how to analyze and tune actual parallel programs. Sequential performance tuning has largely been reduced to (at most) profiling to find the computationally-intensive region of code, and either choosing a more efficient algorithm, choosing a different set of compiler flags or different compiler, or using a canned library routine. Advanced analysis may consider cache bandwidth and interference or operating system jitter. Parallel performance analysis is subject to many more pitfalls. Threads or processes may be delayed due to synchronization or communication delays; shared cache usage may cause additional interference; NUMA memory accesses may require more careful attention to memory allocation strategies. Program analysis tools can help here.

Stanford’s Computer Science Department Chair, Bill Dally, is quoted as saying “parallel programming is perhaps the largest problem in computer science today and is the major obstacle to the continued scaling of computing performance that has fueled the computing industry, and several related industries, for the last 40 years.” David Patterson, former ACM president and head of the Parallel Computing Laboratory at Cal Berkeley, said that “in order for parallelism to succeed, it has to result in better productivity, efficiency, and accuracy.”

Parallel processing is an obstacle, but then so is sequential processing. Parallel computing can result in better productivity, efficiency, and accuracy in the scientific process overall, but it’s silly to think that it will result in better productivity and efficiency in the programming process itself. The best we can hope for is to make parallel programming not much harder than sequential programming. Dally himself is giving a keynote speech at the International Conference on Parallel Processing in Portland in September titled “Streams: Parallel Programming Made Simple.” There’s that simple word yet again.

That’s not to say there aren’t problems to be solved. There are, and parallel programming is going to continue to be a problem. However, unlike the doomsayers and the simplifiers, I think these are hard problems, but not impossible. We solve hard problems every day. We’ve already developed several successful, widely-used parallel programming paradigms, including MPI and OpenMP. They may not be perfect, universal models, but we should learn what worked. And we have as much to learn from proposed models that did not succeed or survive, such as High Performance Fortran.

And, frankly, I have confidence in the applications programmer’s ability to develop algorithms and approaches to using parallelism. Apparently, many in the computer science community do not.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This