Compilers and More: Parallel Programming Made Easy?

By Michael Wolfe

September 2, 2008

Look at all the current research projects aimed at exactly that: making parallel programming easy!

The NESL language aims to “make parallel programming easy and portable.” More precisely, its goal is to allow programmers “to write parallel code as concisely and clearly as sequential code, while achieving close to peak performance.”

Microsoft’s Parallel Computing Platform team aims to provide a runtime that provides support for parallelism, models, libraries and tools that “make it easy for developers to construct correct, efficient, maintainable and scalable parallel programs.”

The CxC (C by C) language has one-sided communication operations, “which makes parallel programming easy and efficient.”

My alma mater, the University of Illinois, has a new Universal Parallel Computing Research Center, whose goal is simply “Making parallel programming easy.” Marc Snir, the Computer Science Department head, said the goal for this effort is to “make ‘parallel programming’ synonymous with ‘programming’.”

The Parallel Computing Lab at the University of California at Berkeley has adopted the goal to “make it easy to write correct programs that run efficiently on manycore systems, and which scale as the number of cores doubles every two years.”

Intel’s Threaded Building Blocks (TBB) extends C++ for parallelism in an easy to use and efficient manner.

Tim Mattson (Intel) points out that in “our quest to find that perfect language to make parallel programming easy,” we have come up with an alarming array of parallel programming choices: MPI, OpenMP, Ct, HPF, TBB, Erlang, Shmem, Portals, ZPL, BSP, CHARM++, Cilk, Co-array Fortran, PVM, Pthreads, Windows threads, Tstreams, GA, Java, UPC, Titanium, Parlog, NESL, Split-C, and on and on.

Tim and I are colleagues on the OpenMP Language committee, which recently finalized the OpenMP 3.0 standard. OpenMP’s mission is to define a “portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications for platforms ranging from the desktop to the supercomputer.” Is simple even easier than easy?

Every time I see someone claiming they’ve come up with a method to make parallel programming easy, I can’t take them seriously. First, “making parallel programming easy” must be harder than “making programming easy,” and I don’t think we’ve reached that first milestone yet. Yes, I can (and do) knock off quick programs to search or compute something simple, but then I can knock off a quick project to build a bridge over the seasonal stream in our backyard, too. I wouldn’t trust that bridge to freeway traffic, and I wouldn’t trust that quick program to solve anyone else’s problem, either.

All this is folly. I agree with Andrew Tanenbaum, quoted at the June 2008 Usenix conference: “Sequential programming is really hard, and parallel programming is a step beyond that.” Yes, programming is really hard. Look at the programming effort it takes to produce a well-supported world-class application. If it were easy, Microsoft wouldn’t need legions of programmers to develop and support its software. If sequential programming were a solved problem, we wouldn’t have the relatively recent introductions of new and successful languages, such as Java, and C#.

Consider any software development project. Typically it begins with discussion of interfaces (with other software, with data, with users), standards (programming language, operating system, formats), and requirements (functionality and performance). Often, a prototype implementation is developed and tested. One of the tests will involve performance, especially at the limits of the expected input. If the performance is satisfactory, no further tuning is necessary. If not, the team will look at alternative implementations, different algorithms, data structures, shortcuts, etc.; one of the schemes will be to use more parallelism.

In fact, the ONLY reason to consider parallelism is for better performance. Parallelism by itself doesn’t deliver any new features or functionality; it may allow you to deliver new functionality because of improved performance, but the parallelism itself didn’t create the functionality. Most of the programs I write don’t need parallelism because they don’t take long enough to matter. Only those with large datasets or lots of computation are even candidates. I’d be wasting my time and my employer’s resources adding complexity to my program in order to use parallelism that I don’t need.

Moreover, parallelism does not equate to performance. The focus needs to be not on parallelism, but on performance, where parallelism is one of the tools to get it.

Time and again we hear advocates claiming that if you just use their compiler, language, library, tool, methodology, etc., they will guarantee good performance now and forevermore. Yet each time around, the methods are limited to the technology of the day. Let’s look at an example algorithm, matrix multiplication:

   for i in 1:n
     for j in 1:n
       for k in 1:n
         c(i,j) = c(i,j) + a(i,k)*b(k,j)

Early compilers were tuned to optimize just such programs. As pipelined functional units were introduced, libraries were written to replace the inner kernel loops, such as STACKLIB and the BLAS; we could write this loop using a DAXPY call:

   for j in 1:n
     for k in 1:n
       daxpy( n, b(k,j), a(1,k), 1, c(1,j), 1 )
       ! equivalent to:
       ! for i in 1:n
       !   c(i,j) = c(i,j) + b(k,j)*a(i,k)

The library routines were rewritten in vector mode in the 1970s. However, it was soon realized that you could achieve even higher vector performance, called supervector performance, if you optimized the inner two loops to take advantage of vector register locality. Thus came the level-2 BLAS, implementing matrix-vector operations. Matrix multiplication turned into a loop around a DGEMV call:

   for j in 1:n
     dgemv( ‘n’, n, n, 1.0, a(1,1), n, b(1,j), n, 1.0, c(1,j), 1 )
     ! equivalent to:
     ! for k in 1:n
     !   for i in 1:n
     !     c(i,j) = 1.0*c(i,j) + 1.0*b(k,j)*a(i,k)

This was sufficient until the microprocessor revolution, where cache behavior dominated the processor performance. We then were given the level-3 BLAS, implementing matrix multiplication in a single call to DGEMM, which could then be appropriately tiled, unrolled, vectorized, and optimized for each machine. Now we’re in the multicore or manycore era, and who knows where it will lead in the next decade or two? Given how well we’ve predicted what the machines of the future will look like, can we design the universal programming model today?

One aspect of computer science is algorithm analysis, studying the computational and memory requirements of an algorithm. We learn how to reverse a linked list in linear time and constant space. We learn about the differences between bubble sort (O(N^3)), quicksort (O(N log N) on average, easily parallelizable) and heapsort (O(N log N) worst case, and my personal favorite). We learn to pay attention to the hidden constants in the big-O notation, since the constant factor can dominate the computation cost for reasonable inputs; thus, O(N^3) is almost always worse than O(N^2), but O(N log N) with a small constant may be better than O(N) with a big constant, for the expected cases.

For instance, in compilers, no one ever uses the linear time algorithm for computing dominators, because the constant factor is too big. We learn that the analysis usually translates directly to the actual performance. And we learn tricks, like hash table lookup, to work around difficult performance problems. None of this depends on the particular programming language or processor; the von Neumann model has served us well.

Algorithm analysis for parallel computing studies parallelism models, such as Bulk Synchronous Parallel (BSP), Communicating Sequential Processes (CSP), Data-Flow, and so on. These models make assumptions about the cost (or lack thereof) for synchronization and communication. Until we have machines that implement these models more closely, we need to take into account the cost of the virtualization as well. It doesn’t matter how efficient an algorithm is in some abstract machine model if the implementation of the abstract model is itself expensive.

The current “parallelism crisis” can only be resolved by three things. First, we need to develop and, more importantly, teach a range of parallel algorithms. When we teach sorting, we take into account in-core vs. out-of-core, the cost of doing a comparison, and the cost of copying the data versus using indices. Different sort algorithms work better with different dataset characteristics. Similarly, we must teach a range of parallel algorithms, so a programmer knows what dataset and system characteristics will affect the performance, and hence the choice of algorithm.

Second, we need to expand algorithm analysis to include different parallelism styles. It’s not enough to focus on just the BSP or SIMD or any other model; we must understand several models and how they map onto the target systems. We’ve become lazy; the sequential von Neumann model has been sufficiently universal that we think we can use a single model to cover all computing. Yes, this sounds like work, and it sounds like we’re going to have to think for a living.

Finally, we need to learn how to analyze and tune actual parallel programs. Sequential performance tuning has largely been reduced to (at most) profiling to find the computationally-intensive region of code, and either choosing a more efficient algorithm, choosing a different set of compiler flags or different compiler, or using a canned library routine. Advanced analysis may consider cache bandwidth and interference or operating system jitter. Parallel performance analysis is subject to many more pitfalls. Threads or processes may be delayed due to synchronization or communication delays; shared cache usage may cause additional interference; NUMA memory accesses may require more careful attention to memory allocation strategies. Program analysis tools can help here.

Stanford’s Computer Science Department Chair, Bill Dally, is quoted as saying “parallel programming is perhaps the largest problem in computer science today and is the major obstacle to the continued scaling of computing performance that has fueled the computing industry, and several related industries, for the last 40 years.” David Patterson, former ACM president and head of the Parallel Computing Laboratory at Cal Berkeley, said that “in order for parallelism to succeed, it has to result in better productivity, efficiency, and accuracy.”

Parallel processing is an obstacle, but then so is sequential processing. Parallel computing can result in better productivity, efficiency, and accuracy in the scientific process overall, but it’s silly to think that it will result in better productivity and efficiency in the programming process itself. The best we can hope for is to make parallel programming not much harder than sequential programming. Dally himself is giving a keynote speech at the International Conference on Parallel Processing in Portland in September titled “Streams: Parallel Programming Made Simple.” There’s that simple word yet again.

That’s not to say there aren’t problems to be solved. There are, and parallel programming is going to continue to be a problem. However, unlike the doomsayers and the simplifiers, I think these are hard problems, but not impossible. We solve hard problems every day. We’ve already developed several successful, widely-used parallel programming paradigms, including MPI and OpenMP. They may not be perfect, universal models, but we should learn what worked. And we have as much to learn from proposed models that did not succeed or survive, such as High Performance Fortran.

And, frankly, I have confidence in the applications programmer’s ability to develop algorithms and approaches to using parallelism. Apparently, many in the computer science community do not.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This