Semantic Supercomputing Reaps Competitive Advantage from Patent Data

By David Rich

September 3, 2008

Mark Twain wrote, “A country without a patent office and good patent laws is just a crab, and couldn’t travel any way except sideways and backways.” But a good patent infrastructure without good ways to search it does not move a country’s industry forward.

Twain should know. He fought a protracted patent dispute with another man in 1871 over the invention of an elastic vest strap. Twain ultimately prevailed, but could have saved himself a great deal of money, time and frustration had he known about the competing patent beforehand.

Every year billions of dollars are wasted on research and development of inventions that are already protected by patent law — an estimated $20 billion in the U.S. and €60 billion in Europe, which equals roughly the combined annual revenues of Microsoft and Apple. In fact, these computing titans themselves have fought costly intellectual property wars due to poor patent intelligence, such as the 2004 patent dispute over the iPod user interface, which Apple ultimately lost to Microsoft.

It’s no wonder patent information is so costly and difficult to divine. The volume of patent data is overwhelming. The world’s collection of patents comprises the largest information repository of the most important achievements of humanity. Since the first patent was issued for a Venetian statue in 1471, 60 million patents have been awarded around the world, with four million patents actively in force today worldwide. And 800,000 new inventions are registered every year. While the data is public, current search tools are inconvenient and inadequate to the needs of professionals. And even if you solve the patent retrieval problem, it’s not enough: researchers today need integrated views of correlated patent information, such as corporate affiliations, scientific information, prior art documents, and breaking news on intellectual property.

To address this challenge, researchers are developing computationally-intensive natural language processing (NLP) algorithms in the new field of semantic supercomputing. One company that is tapping the new technology is Vienna, Austria-based Matrixware Information Services (www.matrixware.com). The firm is combining HPC systems with Interactive Supercomputing, Inc.’s (ISC’s) Star-P software to tackle the ever-growing challenge of finding patent information hidden in the world’s vast patent databases and libraries.

Patents and intellectual property play an increasingly important role as intangible assets of industrial corporations. Over 250,000 companies worldwide depend on patent data. Consequently, professional management of patents and precise retrieval of patent information are essential business processes for industries around the globe.

Companies pioneering semantic computing typically employ teams of computer engineers, mathematicians, linguists and patent specialists to help companies mine patent repositories for intellectual property information. The semantic supercomputing techniques and HPC technology they utilize enable the users to retrieve relevant patent information faster, more easily and at less cost.

Matrixware, for example, employs multicore SGI Altix 4700 blade servers and Linux clusters running Star-P to develop and run its NLP algorithms on terabyte-scale patent data sets. Star-P enables Matrixware’s team to continuously code and refine NLP algorithms on their desktops using Python or MATLAB, and then run them interactively on HPC systems with little to no modification. The semantic supercomputing model eliminates the need to re-program applications in C, Fortran or MPI in order to run on parallel systems, resulting in huge productivity gains.

Patent retrieval presents two levels of computational challenges. The first challenge is data centric. The patent information is dispersed among several hundred repositories, dating back as far as the 1700s. These diverse patent collections have evolved through 200 generations of methods of storing documents between then and today. Some of the information is digital data; other is derived from documents that have been scanned and converted with OCR systems, and others are just plain document images. Researchers must wrestle with enormous gaps and inconsistencies in the format of 100 million documents.

Another challenge is database centric. Today, most patent data is stored in relational databases. But the art of managing patent information is based on 4,000 years of library science methods, which conflict with the restrictions imposed by relational databases. This severely limits the accessibility to the data.

For example, most patent documents are classified by a taxonomy scheme set up by the World Intellectual Property Organization (WIPO) that contains approximately 70,000 classes, called the Intellectual Property and Technology Commercialization (IPTC) taxonomy. It ranges widely from chemical to mechanical patent classifications with many sub-classifications beneath each major class (e.g. automotive being a sub-class of mechanical).

“We wanted to see if there are specific terms that are characteristic for specific classes within the taxonomy,” said Matrixware CEO Francisco Weber. His team tried using relational databases running on a conventional server, taking a sampling of about 1.5 million patent documents, from which they extracted 10 billion terms. They then created a simple database join to aggregate the terms according to their classifications. The result was a database join of 1.5 million X 10 billion rows. “We ended up busting every commercial database system we tried,” he added.

To solve the problem, Matrixware developed the Alexandria System — a central storage repository for the raw data as well as for enriched data running on the HPC systems. It takes a different approach to storing and managing large amounts of document data. The data access of Alexandria is modeled along the well-established library science methods and embedded into a workflow system. The Alexandria server also provides the user with exact and constantly updated document counts in the collections from which the researcher retrieves.

To make patent information usable, accessible and meaningful, the Alexandria System recursively generates metadata from data as well as metadata from metadata. These refinement processes continuously feed and update the Alexandria repository and allow users to actively “cultivate the corpus,” to use the industry expression for creating a rich collection of linguistic data.

To provide a front-end development framework to Alexandria, Matrixware created a software infrastructure called the Leonardo Ecosystem. Within this framework, technologists can simultaneously create and refine new search tools and methods, as well as collaborate with other users in the user community to solve problems. This benefits users by allowing them to choose the best available tool for specific information needs and existing workflows.

The huge memory models required by the patent corpus contained in Alexandria required an 80-processor node SGI Altix system with 380 GB of memory. The Alexandria system presented two computational challenges that could only be addressed by HPC systems. The first was at the pure textstring level. The process of splitting text, extracting and tokenizing words from a collection of 1.5 million patent documents generates 10 billion terms, requiring memory models of multiple terabytes for processing. Moreover, the research process is inherently iterative and experimental, requiring constant refinement of the NLP algorithms and repetitive batch runs on the computer. Consequently, supercomputing speeds were necessary to make the work flow reasonable.

The second challenge was handling the huge matrices. The text strings that are extracted create counts of occurrences of terms within the patent documents, which are encoded numerically. This results in matrices of up 10 million by 10 billion. Applying the algorithms to these matrices required a software platform that could scale to whatever extent the data required.

Semantic supercomputing processes patent data by its contextual meaning to turn it into valuable information for users. Its purpose is to boost their productivity and open up new opportunities for them using intellectual property information. But while users are typically experts in information retrieval, they are not parallel programming experts. Semantic supercomputing enables them to tap the power of HPC systems to refine and run their natural language processing applications as well as to improve the data quality of patent repositories.

About the Author

David Rich is the Vice President of Marketing at Interactive Supercomputing. David brings to ISC more than 23 years of marketing, sales and support experience in both large and entrepreneurial high tech companies. At AMD he directed the company’s entry into the HPC cluster market and secured large wins such as the Red Storm system at Sandia National Laboratories and the Dawning 4000A at the Shanghai Supercomputer Center. While at AMD, he served as president of the HyperTransport Consortium, a standards organization for high-speed interconnect technology. David’s earlier experience includes being the founding manager of the TotalView product line, which has become the de facto standard for parallel and distributed debugging. He served as vice president of Fujitsu System Technologies, which developed high-speed networking technology that was a pre-cursor to InfiniBand. His parallel processing experience started at BBN Technologies where he worked on the Butterfly series of computers. David received a bachelor’s degree in computer science from Brown University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This