Cray Unveils Personal Supercomputer

By John E. West

September 16, 2008

With few exceptions in its 30-year history, Cray has focused exclusively on the high end of the HPC market. This week the company announced a product aimed at a new space: deskside HPC. Ian Miller, Cray’s senior vice president of sales and marketing, talked with HPCwire about the company’s new CX1 personal supercomputer.

HPCwire: You’ve just announced a new personal supercomputing product called the Cray CX1. What is it?

Miller: The CX1 is Cray’s new personal supercomputer. The unit is small — it’s meant to fit beside a desk — and it can be plugged into a wall socket on standard office power. Users can configure it in a variety of ways to suit their specific needs, but fully outfitted for computation, it will hold up to eight nodes, each with two dual- or quad-core Intel Xeon processors, and up to 64 GB of memory per node. The machine is very versatile, with configuration options that allow users to mix and match storage, compute and visualization capability in the same box. The system can be configured with up to 4 TB of storage, and comes with Gigabit Ethernet or InfiniBand networking.

Customers will be able to pick the operating system that best matches their applications and their expertise. The CX1 comes with either RedHat Linux or, for the first time ever on a Cray product, Windows HPC Server 2008.

HPCwire: This is quite a departure for Cray. Who is this computer for?

Miller: We’re launching the CX1 with the tag line “we take supercomputing personally,” and that really reflects the whole philosophy we’ve adopted while developing this machine. The CX1 provides supercomputing where you need it. It’s designed to run on standard 110 volt office power, and doesn’t require additional cooling. It can sit under your desk, right where you work.

It’s built for individual team and workgroup deployment, providing up to 64 cores (in a single chassis) of processing power that will enable users to run small and medium-sized jobs without the need to sit in batch queues and compete with other users for resources. And it can be configured to provide the particular mix of capabilities users need. While the CX1 holds up to eight compute nodes, customers can buy just the right number at first and then expand as their needs grow, and they can supplement compute nodes with storage and visualization nodes to make sure they have the right balance of capabilities that fit their needs.

The CX1 will fit well in workgroups and departments that need their own parallel processing capabilities, in business that need high performance computing for engineering or business intelligence, or even for developers in traditional high end supercomputing facilities who need a responsive, affordable environment for developing and debugging HPC software.

HPCwire: Why does this product make sense at this particular time? What hole in the market is it filling?

Miller: The CX1 is about helping customers overcome the obstacles to HPC adoption. Although there have been many recent accounts of the barriers to entry for customers new to HPC, the “Reveal” and “Reflect” reports from the US Council on Competitiveness are great recent examples. These reports identify three significant barriers: lack of application software, lack of sufficient talent, and cost constraints. We feel that we’ve gone a long way toward addressing all three of these with the CX1.

First, the CX1 uses standard operating systems. Both RedHat Linux and the Windows family of operating systems standard in offices and research groups around the world, and both are widely supported by software vendors. And to make sure that the available pool of application software continues to grow, Cray is building partnerships with a number of the best known ISVs in segments like manufacturing, life sciences, financial services, and digital media.

Second, we’ve tried to lower the bar in terms of the talent required to deploy one of these at a customer site. In terms of infrastructure, the CX1 will just drop into a standard office environment. The operating system and tools will be very familiar to Linux or Windows users, and Cray is offering a 3-year warranty and onsite support for those times that something out of the ordinary happens and customers need an expert to come look at the system.

Finally, the CX1 starts at just $25,000, with fully configured systems reaching the $80,000 range. The system is very affordable in terms of both the initial capital investment and the lowered total cost of ownership customers will see from ease of management and standard office power and cooling requirements.

HPCwire: At its heart, the CX1 is still a cluster, and clusters are notoriously hard to configure, purchase and deploy. Can you talk a little more about how you’ve tried to put the CX1 within reach of non-specialists?

Miller: This is a system designed for non-specialists all the way from purchase to submitting the first job. The CX1 can be purchased on the Web using an online configuration tool that is oriented to the needs of customers in specific industries. The tool will help customers find the system configuration (in terms of dual or quad-core, amount of memory, and so on) that best meets their specific needs for the kinds of application codes that are typical of their industry. Of course, more advanced users will be able to specify precisely what they want.

Each system will ship in a single box, with color-coded cabling, and software pre-installed for ease of setup. System configuration is driven by wizards and GUI interfaces that make setup straightforward, even for first-time cluster owners. We are also building out a Web community where users will be able to take advantage of the community of CX1 users and Cray specialists to offer support and advice to one another.

Although this is a different kind of system, it’s still a Cray, and we want to make sure that CX1 customers have the kind of experience Cray customers have come to expect from us. Each CX1 will come with a 3-year warranty and next business day onsite support, standard.

HPCwire: Seeing Windows on this Cray product is a big surprise. Can you talk about what motivated this decision?

Miller: We believe that there are many workstation users today who are used to working in a Windows environment and find the thought of moving to a more powerful platform like an HPC cluster and the challenge of learning a new operating system daunting. By offering an operating system that they are familiar with, we believe the barriers to adoption are significantly lowered. Our approach and goals for the Cray CX1 are in alignment with Microsoft’s — to enable more people to move to high performance computing and the productivity improvements that will result.

HPCwire: What are the specifics of available processors, storage, and graphics options?

Miller: The Cray CX1 is highly versatile with a variety of blades that can be mixed and matched to customize the system to meet varying user requirements. It is designed with eight nodes in a chassis with eight slots for blades. The CC48 is a single-socket and the CC54 is a dual-socket blade — both with dual- or quad-core Intel Xeon processors and 8 DIMM slots per blade. A single chassis supports up to 16 Intel Xeon dual-core or quad-core processors — for a maximum of 64 cores. In addition, each node can accommodate up to 64GB of memory.

This flexibility extends beyond just compute blade options — the CX1 can also be configured with one or more visualization blades — something not even available in any other system of this size. The CV5401 visualization blade features NVIDIA Quadro FX graphics cards as well as an optional NVIDIA GPU.

Additionally, there are two different storage blade options, the CS5404 and CS5408, which combine Intel Xeon’s for computing with four or eight 2.5 inch Serial Attached SCSI disk drives for storage. Configuring a system for maximum I/O results in up to 4 terabytes of storage in a single Cray CX1 chassis.

HPCwire: Can I put more than one CX1 together in a system?

Miller: Absolutely. You can actually cluster three CX1’s together — for up to 192 cores of compute — without an external switch, and you can grow your cluster beyond that with some additional switch gear. And because we are committed to an “ease of everything” experience for non-traditional HPC customers, we are building this to be an Intel Cluster Ready system.

HPCwire: Cray is a company that has traditionally focused on delivering solutions for the very high end of this space. The CX1 is at the opposite end of the HPC market, and will require a totally different approach to both sales and support. How is the company going to manage such disparate product models?

Miller: We have approached the Cray CX1 differently, with a lower-touch sales process and tighter relationships with strategic partners, like Microsoft and Intel. They CX1 can be ordered easily from our Web site or through a dedicated inside sales team that we’ve established. Cray has also established certified service providers around the world to provide the quality service expected from Cray. So the introduction of the Cray CX1 is not distracting us from our core, high-end business.

HPCwire: Are we seeing a new Cray?

Miller: Not a new Cray, but a new aspect to Cray. What we are seeing is Cray’s response to the HPC needs of a new market. This is a very exciting time to be in high performance computing. The move to multicore processors is leading to an explosion of developers facing the same problems, and using the same tools and techniques that have been the sole province of the supercomputing community for 50 years. For perhaps the first time in modern history, the flow of innovation in high performance computing is going to be driven by the millions of programmers focused on commodity application development. This will mean a proliferation of new ideas, new tools, and new techniques with the potential to completely reshape high end computation. With decades of experience in supercomputing, Cray is ideally positioned to help lead this transformation by providing tools that will help open up the promise of high performance computing to a broader community of users than ever before.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Explain the Asteroid that Killed the Dinosaurs

May 28, 2020

The supercomputing community has cataclysms on the mind. Hot on the heels of supercomputer-powered research delving into the fate of the neanderthals, a team of researchers used supercomputers at the DiRAC (Distributed R Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This