Accelerating Financial Computations on Multicore and Manycore Processors

By Michael D. McCool and Stefanus Du Toit

September 22, 2008

High-performance computation is a necessity in modern finance. In general, the current value of a financial instrument, such as a stock option, can only be estimated through a complex mathematical simulation that weighs the probability of a range of future possible scenarios. Computing the value at risk in a portfolio of such instruments requires running a large number of such simulations, and optimizing a portfolio to maximize return or minimize risk requires even more computation. Finally, these computations need to be run continuously to keep up with constantly changing market data.

Although a large amount of computation is a necessity, doing it efficiently is crucial since financial datacenters are under severe power and cooling constraints. Multicore processors promise improved computational efficiency within a fixed power and cooling budget. However, achieving high efficiency execution on these processors is non-trivial. In the case of finance, new algorithms are constantly being developed by application specialists called quantitative analysts (or “quants”). Time is literally money in finance, and so high-productivity software development is just as important as efficient execution.

In this article, we will discuss high-productivity strategies for developing efficient financial algorithms that can take advantage of multicore processors, including standard x86 processors but also manycore processors such as GPUs and the Cell BE processor. These strategies can lead to one and even two orders of magnitude improvement in performance per processor.

Multicore processors allow for higher performance at the same power level by supporting multiple lightweight processing elements or “cores” per processor chip. Scaling performance by increasing the clock speed of a single processor is inefficient since the power consumed is proportional to (at least) the square of the clock rate. At some point, it is not practical to increase the clock rate further, as the power consumption and cooling requirements would be excessive. The air-cooling limit in particular was reached several years ago, and clock rates are now on a plateau. In fact, clock rates on individual cores have been decreasing slightly as processor vendors have backed away from the ragged edge in order to improve power efficiency. However, achievable transistor density is still increasing exponentially, following Moore’s Law. This is now translating into an exponentially growing number of cores on each processor chip.

Processors from Intel and AMD supporting the x86 instruction set are now available with four cores, but six and eight core processors are expected soon. Manycore processors such as GPUs and the Cell BE can support significantly more cores, from eight to more than sixteen. In addition, in modern multicore processors each core also supports vector processing, where one instruction can operate on a short array (vector) of data. This is another efficient way to increase performance via parallelism. Vector lengths can vary significantly, with current x86 processors and the Cell BE supporting four-way vectors and GPUs supporting anywhere from five to thirty-two. Vector lengths are also set to increase significantly on x86 processors, with the upcoming Intel AVX instruction set supporting 8-way vectors and the Intel Larrabee architecture supporting 16-way vectors.

Developing software for multicore vectorized processors requires fine-grained parallel programming. A fine-grained approach is needed because the product of the number of cores and the vector length in each core, which defines the number of numerical computations that can be performed in each clock cycle, can easily be in the hundreds. The other difference between modern multicore processors and past multi-processor parallel computers is that all the cores on a multicore processor must share a finite off-chip bandwidth. In order to achieve significant scalability on multicore processors, optimizing the use of this limited resource is absolutely necessary. In fact, in order to hide the latency of memory access it may be necessary to expose and exploit even more algorithmic parallelism, so one part of a computation can proceed while another is waiting for data.

The financial community has significant experience with parallel computing in the form of MPI and other cluster workload distribution frameworks. However, MPI in particular is too heavyweight for the lightweight processing elements in multicore processors (not to mention manycore processors) and cannot, by itself, optimize memory usage or take advantage of the performance opportunities made available through vectorization. Some alternative strategies are needed to get the maximum performance out of multicore processors.

We will now discuss financial workloads. Option pricing is one of the most fundamental operations in financial analytics workloads. More generally, the current value of an “instrument,” of which an option is one example, needs to be evaluated through probabilistic forecasting.

Monte Carlo methods are often used to estimate the current value of such instruments in the face of uncertainty. In a Monte Carlo simulation, random numbers are used to generate a large set of future scenarios. Each instrument can then be priced under each given future scenario, the value discounted back to the current time using an interest calculation (made complicated by the fact that interest rates can also vary with time), and the results averaged (weighted by the probability of the scenario) to estimate the current value.

Simple versions of Monte Carlo seem to be trivially parallelizable, since each simulation can run independently of any other. However, even “simple” Monte Carlo simulations have complications. First, high-quality random numbers need to be generated and we must ensure that each batch of parallel work gets a unique set of independent, high-quality random numbers. This is harder than it sounds. The currently accepted pseudo-random number generators such as Mersenne Twister are intrinsically sequential algorithms, and may involve hundreds of bytes of state.

Typically a lookup table of starting states needs to be generated so that the random number sequence can be restarted at different points in a parallel computation. Since restarting the state of a random number generator is significantly more expensive than stepping serially to the next value, in practice the parallelism is done over “batches” of Monte Carlo experiments, with each batch using a serial subsequence of the random number generator’s output. The size of the batch should be tuned to match the amount of local memory and number of cores in the processor. Also, despite the name, random number generators need to be deterministic and repeatable. For various reasons (including validation, legal and institutional), pricing algorithms need to give the same answer every time they run. Given these issues, some infrastructure that supports parallel random number generation in a consistent way is essential.

The last step in Monte Carlo algorithms can also be troublesome: averaging. First, high precision is often needed here. In practice, the results of millions of Monte Carlo experiments need to be combined. Unfortunately, sum of more than a million numbers cannot easily be done reliably using only single precision, since single precision numbers themselves only have about six to seven digits of precision. Fortunately, manycore accelerators have recently added double-precision capabilities. Second, different strategies for doing the summation, a form of what is often called “reduction,” are possible by exploiting the associativity of the addition operation. There is no single strategy of parallelism for reduction that is optimal for all processors. As with random number generation, in order to make an implementation portable it is useful if reduction operations are abstracted and done by a parallel runtime platform or framework.

Not all Monte Carlo simulations are “simple.” More sophisticated examples manipulate data structures to allow the reuse of results, or use “particle filters” to iteratively focus computation on more important parts of the search space in order to improve accuracy. Simple Monte Carlo simulations often scale very well because they use relatively little memory bandwidth. More sophisticated versions that reuse results via data structures may not scale as well unless care is taken to ensure that memory access does not become a bottleneck. Reuse of results and theoretical improvements in convergence rates need to be weighed against the reduced efficiency of more complex algorithms. However, with some care taken to ensure that the data locality present in a complex algorithm is properly exploited, good scalability is possible even for algorithms with a lot of data reuse and communication.

In order to achieve significant performance improvement on multicore processors, two things are needed: efficient use of low-level operations such as vector instructions, and second, an appropriate choice of parallelization and data decomposition strategy. The latter is obviously important, but how can it be achieved without interfering with the former, or vice-versa? The solution is to use a meta-strategy based on code generation. The dataflow pattern gives the decomposition strategy, and this is managed by one level of abstraction. After the computation has been laid out, it can be optimized for a particular set of low-level operations using a second stage of compilation.

Fortunately, good decomposition strategies can be designed for a relatively small number of recurring patterns. We’d like to figure out how to implement these patterns once, encapsulate them, and then reuse them for all occurrences of the pattern. The trick is to abstract the strategies for dealing with these patterns without introducing additional runtime overhead. Staged code generation accomplishes this. First, a high-level program serves as scaffolding for describing the dataflow of the computation, but is not involved in the actual execution. Instead, the scaffolding only serves to collect the computation into components and organize it for vectorization. Once each component is collected, a second stage of code generation can be used to perform low-level optimizations. This strategy is simpler to implement than it sounds, given the support of a suitable software development platform.

Multicore and manycore processors provide many opportunities for increased performance and greater efficiency. However, actually obtaining good scalability on any multicore processor requires both a fine-grained parallelization strategy and a dataflow design that optimizes memory usage. Memory bandwidth in particular is a limiting resource in multicore processors. Using a high-level framework, it is possible to abstract patterns of dataflow and strategies for dealing with them so they can be used efficiently, while still maintaining processor independence.

About the Authors

Dr. Michael McCool is chief scientist and co-founder of RapidMind and an associate professor at the University of Waterloo. He continues to perform research within the Computer Graphics Lab at the University of Waterloo. Professor McCool has a diverse set of published papers, and his research interests include high-quality real-time rendering, global and local illumination, hardware algorithms, parallel computing, reconfigurable computing, interval and Monte Carlo methods and applications, end-user programming and metaprogramming, image and signal processing, and sampling. He has degrees in Computer Engineering and Computer Science.

Stefanus Du Toit is chief architect and co-founder of RapidMind, and has led the development and evolution of the RapidMind platform since 2003. Stefanus has extensive experience in the areas of graphics, GPGPU, systems programming and compilers. He holds a Bachelors of Mathematics degree in Computer Science.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This