GPUs Finding A New Role on Wall Street

By Michael Feldman

September 22, 2008

Despite the carnage from this year’s financial crisis, the arms race in algorithmic trading is likely to continue. Behind that competition are a variety of high performance computing technologies, such as commodity clusters, FPGA accelerators and Blue Gene supercomputers. One of the new kids on Wall Street is GPU computing, a technology that is making inroads across nearly every type of HPC application. The vector processing capabilites of GPUs makes them especially well-suited to financial analytics.

A quantitative finance company that has jumped into GPU computing with both feet is Hanweck Associates LLC. The company works with institutions like brokerage firms, investment banks, and hedge funds to help them accelerate thier market data applications. Hanweck’s claim to fame is their early adoption of NVIDIA’s CUDA programming language and Tesla GPU computing platform for options analytics. The NVIDIA technology is the basis for Hanweck’s Volera product line, a financial analytics engine that is used for trading and risk management. The engine is the foundation for the company’s flagship products VoleraFeed and VoleraRisk.

Hanweck has a small team of in-house programmers that develops the software, with backgrounds ranging from the trading desk to academia. When the company started out, it was basically a quant consultancy, doing quantitative financial modeling for institutions that needed to develop debt equity valuation, market impact modeling and algorithmic trading. As they developed GPU expertise, they found a largely untapped niche for GPU middleware in financial analytics workloads.

The company has also expanded into a technology consultancy role, especially with regards to NVIDIA’s GPU computing platform. Gerald (Jerry) Hanweck, the company’s founder and principal partner, says his company has been involved in proof-of-concept project with some of the larger Wall Street firms. For example, they have a project underway to develop a mortgage analytics application for acquiring subprime mortgages. Part of the project will involve building the mortgage models around the GPU. Hanweck says they expect to realize a 100x speedup using GPUs compared to traditional CPUs. According to him, this type of experimentation is commonplace in Wall Street. He believes that most major financial institutions are exploring GPU computing at some level and many, if not all, have pilot projects in place.

While GPU performance is strongest in the single precision (32-bit) floating point, this turns out to be a good fit for financial analytics. Even though the second generation GPU computing devices will have double precision (64-bit) capability, single precision will continue to be much faster for the foreseeable future. Fortunately, you don’t need double precision for most types of numerical analysis, Hanweck explains. When 64-bit floating point became the default on CPUs, most developers just went along for the ride. “I think a lot of people got lazy over the years and took double precision for granted,” he says.

Hanweck saw the potential of the GPU acceleration in financial analytics early on, and started developing with an early version of CUDA back in February 2007. In addition to the NVIDIA technology, he also looked at FPGAs, the Cell processor and ATI’s (AMD’s) GPUs. The company even dabbled with PeakStream’s development platform (before Google bought them). According the Hanweck, nothing was as straightforward nor as well developed as NVIDIA’s CUDA-Tesla technology. And with the increasing volumes of data flowing through the financial markets and the pressure to execute trades first, Hanweck saw conventional CPU-based platforms falling behind the performance curve. “For the end user, speed is king right now,” he says.

One area where you see the data volumes overwhelming Moore’s Law CPU economics is market messaging. In the U.S. alone, there are currently about 300,000 options that trade over 3,500 stocks and indices. All the pricing data is fed into a service called OPRA — for Options Price Reporting Authority — and that data volume is taking off. “This year they expect to hit 1,000,000 messages per second,” says Hanweck. “My guess is they’ve already exceeded that.”

Hanweck remembers his stint at JPMorgan, when he was the firm’s chief equity derivatives strategist. He says in 2003 they only needed a relatively large system with conventional servers to do these options calculations. But more recently, investment banks have built much larger computing clusters or grids with many more racks of servers costing millions of dollars — and millions of dollars per year to run them. Hanweck says they can compress a system like that down to about 10U worth of rack space using NVIDIA Tesla-equipped servers.

At the datacenter of Hanweck partner ACTIV Financial Systems Inc., a couple of conventional servers are used to subscribe and publish the market data, while three NVIDIA Tesla S870-equipped servers are employed to process it. The S870 hold four 8-series GPUs, each capable of around 500 single precision gigaflops. With Hanweck’s VoleraFeed, a GPU-accelerated application that runs on top of a market feed appliance (like ACTIV’s), anytime a stock price changes, all of the options’ risks can be recomputed in under 10 milliseconds.

And that’s with the first generation GPU computing technology. When they upgrade to NVIDIA’s S1070 Tesla boards, they think they can cut that to less than 5 milliseconds. In fact, Hanweck says they’ve already tested an early version of the new device, which NVIDIA has assured them is slower than the production version. “Basically, we can cut our compute time in half just by upgrading our hardware,” says Hanweck. “It’s a lot easier to do that than to be a clever programmer.”

That statement harkens back to the 20th century experience of CPU-based computing, when applications automatically got a performance boost every time the chip vendors bumped up the processor clock speeds. With clock speeds more or less stagnant now and the promise of multicore CPU scalability still a pipe dream, the data parallelism offered by GPUs is one way at least some applications can jump back on the performance curve. The way Hanweck sees it, “from a technology standpoint, GPUs are going to change the way the world works.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This