GPUs Finding A New Role on Wall Street

By Michael Feldman

September 22, 2008

Despite the carnage from this year’s financial crisis, the arms race in algorithmic trading is likely to continue. Behind that competition are a variety of high performance computing technologies, such as commodity clusters, FPGA accelerators and Blue Gene supercomputers. One of the new kids on Wall Street is GPU computing, a technology that is making inroads across nearly every type of HPC application. The vector processing capabilites of GPUs makes them especially well-suited to financial analytics.

A quantitative finance company that has jumped into GPU computing with both feet is Hanweck Associates LLC. The company works with institutions like brokerage firms, investment banks, and hedge funds to help them accelerate thier market data applications. Hanweck’s claim to fame is their early adoption of NVIDIA’s CUDA programming language and Tesla GPU computing platform for options analytics. The NVIDIA technology is the basis for Hanweck’s Volera product line, a financial analytics engine that is used for trading and risk management. The engine is the foundation for the company’s flagship products VoleraFeed and VoleraRisk.

Hanweck has a small team of in-house programmers that develops the software, with backgrounds ranging from the trading desk to academia. When the company started out, it was basically a quant consultancy, doing quantitative financial modeling for institutions that needed to develop debt equity valuation, market impact modeling and algorithmic trading. As they developed GPU expertise, they found a largely untapped niche for GPU middleware in financial analytics workloads.

The company has also expanded into a technology consultancy role, especially with regards to NVIDIA’s GPU computing platform. Gerald (Jerry) Hanweck, the company’s founder and principal partner, says his company has been involved in proof-of-concept project with some of the larger Wall Street firms. For example, they have a project underway to develop a mortgage analytics application for acquiring subprime mortgages. Part of the project will involve building the mortgage models around the GPU. Hanweck says they expect to realize a 100x speedup using GPUs compared to traditional CPUs. According to him, this type of experimentation is commonplace in Wall Street. He believes that most major financial institutions are exploring GPU computing at some level and many, if not all, have pilot projects in place.

While GPU performance is strongest in the single precision (32-bit) floating point, this turns out to be a good fit for financial analytics. Even though the second generation GPU computing devices will have double precision (64-bit) capability, single precision will continue to be much faster for the foreseeable future. Fortunately, you don’t need double precision for most types of numerical analysis, Hanweck explains. When 64-bit floating point became the default on CPUs, most developers just went along for the ride. “I think a lot of people got lazy over the years and took double precision for granted,” he says.

Hanweck saw the potential of the GPU acceleration in financial analytics early on, and started developing with an early version of CUDA back in February 2007. In addition to the NVIDIA technology, he also looked at FPGAs, the Cell processor and ATI’s (AMD’s) GPUs. The company even dabbled with PeakStream’s development platform (before Google bought them). According the Hanweck, nothing was as straightforward nor as well developed as NVIDIA’s CUDA-Tesla technology. And with the increasing volumes of data flowing through the financial markets and the pressure to execute trades first, Hanweck saw conventional CPU-based platforms falling behind the performance curve. “For the end user, speed is king right now,” he says.

One area where you see the data volumes overwhelming Moore’s Law CPU economics is market messaging. In the U.S. alone, there are currently about 300,000 options that trade over 3,500 stocks and indices. All the pricing data is fed into a service called OPRA — for Options Price Reporting Authority — and that data volume is taking off. “This year they expect to hit 1,000,000 messages per second,” says Hanweck. “My guess is they’ve already exceeded that.”

Hanweck remembers his stint at JPMorgan, when he was the firm’s chief equity derivatives strategist. He says in 2003 they only needed a relatively large system with conventional servers to do these options calculations. But more recently, investment banks have built much larger computing clusters or grids with many more racks of servers costing millions of dollars — and millions of dollars per year to run them. Hanweck says they can compress a system like that down to about 10U worth of rack space using NVIDIA Tesla-equipped servers.

At the datacenter of Hanweck partner ACTIV Financial Systems Inc., a couple of conventional servers are used to subscribe and publish the market data, while three NVIDIA Tesla S870-equipped servers are employed to process it. The S870 hold four 8-series GPUs, each capable of around 500 single precision gigaflops. With Hanweck’s VoleraFeed, a GPU-accelerated application that runs on top of a market feed appliance (like ACTIV’s), anytime a stock price changes, all of the options’ risks can be recomputed in under 10 milliseconds.

And that’s with the first generation GPU computing technology. When they upgrade to NVIDIA’s S1070 Tesla boards, they think they can cut that to less than 5 milliseconds. In fact, Hanweck says they’ve already tested an early version of the new device, which NVIDIA has assured them is slower than the production version. “Basically, we can cut our compute time in half just by upgrading our hardware,” says Hanweck. “It’s a lot easier to do that than to be a clever programmer.”

That statement harkens back to the 20th century experience of CPU-based computing, when applications automatically got a performance boost every time the chip vendors bumped up the processor clock speeds. With clock speeds more or less stagnant now and the promise of multicore CPU scalability still a pipe dream, the data parallelism offered by GPUs is one way at least some applications can jump back on the performance curve. The way Hanweck sees it, “from a technology standpoint, GPUs are going to change the way the world works.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire