GPUs Finding A New Role on Wall Street

By Michael Feldman

September 22, 2008

Despite the carnage from this year’s financial crisis, the arms race in algorithmic trading is likely to continue. Behind that competition are a variety of high performance computing technologies, such as commodity clusters, FPGA accelerators and Blue Gene supercomputers. One of the new kids on Wall Street is GPU computing, a technology that is making inroads across nearly every type of HPC application. The vector processing capabilites of GPUs makes them especially well-suited to financial analytics.

A quantitative finance company that has jumped into GPU computing with both feet is Hanweck Associates LLC. The company works with institutions like brokerage firms, investment banks, and hedge funds to help them accelerate thier market data applications. Hanweck’s claim to fame is their early adoption of NVIDIA’s CUDA programming language and Tesla GPU computing platform for options analytics. The NVIDIA technology is the basis for Hanweck’s Volera product line, a financial analytics engine that is used for trading and risk management. The engine is the foundation for the company’s flagship products VoleraFeed and VoleraRisk.

Hanweck has a small team of in-house programmers that develops the software, with backgrounds ranging from the trading desk to academia. When the company started out, it was basically a quant consultancy, doing quantitative financial modeling for institutions that needed to develop debt equity valuation, market impact modeling and algorithmic trading. As they developed GPU expertise, they found a largely untapped niche for GPU middleware in financial analytics workloads.

The company has also expanded into a technology consultancy role, especially with regards to NVIDIA’s GPU computing platform. Gerald (Jerry) Hanweck, the company’s founder and principal partner, says his company has been involved in proof-of-concept project with some of the larger Wall Street firms. For example, they have a project underway to develop a mortgage analytics application for acquiring subprime mortgages. Part of the project will involve building the mortgage models around the GPU. Hanweck says they expect to realize a 100x speedup using GPUs compared to traditional CPUs. According to him, this type of experimentation is commonplace in Wall Street. He believes that most major financial institutions are exploring GPU computing at some level and many, if not all, have pilot projects in place.

While GPU performance is strongest in the single precision (32-bit) floating point, this turns out to be a good fit for financial analytics. Even though the second generation GPU computing devices will have double precision (64-bit) capability, single precision will continue to be much faster for the foreseeable future. Fortunately, you don’t need double precision for most types of numerical analysis, Hanweck explains. When 64-bit floating point became the default on CPUs, most developers just went along for the ride. “I think a lot of people got lazy over the years and took double precision for granted,” he says.

Hanweck saw the potential of the GPU acceleration in financial analytics early on, and started developing with an early version of CUDA back in February 2007. In addition to the NVIDIA technology, he also looked at FPGAs, the Cell processor and ATI’s (AMD’s) GPUs. The company even dabbled with PeakStream’s development platform (before Google bought them). According the Hanweck, nothing was as straightforward nor as well developed as NVIDIA’s CUDA-Tesla technology. And with the increasing volumes of data flowing through the financial markets and the pressure to execute trades first, Hanweck saw conventional CPU-based platforms falling behind the performance curve. “For the end user, speed is king right now,” he says.

One area where you see the data volumes overwhelming Moore’s Law CPU economics is market messaging. In the U.S. alone, there are currently about 300,000 options that trade over 3,500 stocks and indices. All the pricing data is fed into a service called OPRA — for Options Price Reporting Authority — and that data volume is taking off. “This year they expect to hit 1,000,000 messages per second,” says Hanweck. “My guess is they’ve already exceeded that.”

Hanweck remembers his stint at JPMorgan, when he was the firm’s chief equity derivatives strategist. He says in 2003 they only needed a relatively large system with conventional servers to do these options calculations. But more recently, investment banks have built much larger computing clusters or grids with many more racks of servers costing millions of dollars — and millions of dollars per year to run them. Hanweck says they can compress a system like that down to about 10U worth of rack space using NVIDIA Tesla-equipped servers.

At the datacenter of Hanweck partner ACTIV Financial Systems Inc., a couple of conventional servers are used to subscribe and publish the market data, while three NVIDIA Tesla S870-equipped servers are employed to process it. The S870 hold four 8-series GPUs, each capable of around 500 single precision gigaflops. With Hanweck’s VoleraFeed, a GPU-accelerated application that runs on top of a market feed appliance (like ACTIV’s), anytime a stock price changes, all of the options’ risks can be recomputed in under 10 milliseconds.

And that’s with the first generation GPU computing technology. When they upgrade to NVIDIA’s S1070 Tesla boards, they think they can cut that to less than 5 milliseconds. In fact, Hanweck says they’ve already tested an early version of the new device, which NVIDIA has assured them is slower than the production version. “Basically, we can cut our compute time in half just by upgrading our hardware,” says Hanweck. “It’s a lot easier to do that than to be a clever programmer.”

That statement harkens back to the 20th century experience of CPU-based computing, when applications automatically got a performance boost every time the chip vendors bumped up the processor clock speeds. With clock speeds more or less stagnant now and the promise of multicore CPU scalability still a pipe dream, the data parallelism offered by GPUs is one way at least some applications can jump back on the performance curve. The way Hanweck sees it, “from a technology standpoint, GPUs are going to change the way the world works.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This