Microsoft Aims Newest HPC Offering at Wall Street

By Dennis Barker

September 23, 2008

NEW YORK CITY — When profits drop, businesses look to boost productivity and performance — and nowhere is that demand more urgent right now than on Wall Street. Yesterday, about 60 blocks north of the scene of the recent financial meltdown, Microsoft announced it has released its latest product to provide that boost: Windows HPC Server 2008. The company says the new version will give firms in the financial services business a way to easily and cost-effectively deploy scalable high performance systems.

“Companies have to be more efficient than ever with IT resources, but they need to maintain their position in a competitive marketplace,” said Bill Laing, VP of Microsoft’s Windows Server and Solutions Division, during a speech at the HPC on Wall Street conference yesterday. Financial organizations are relying more and more on high performance systems for routine but critical operations such as real-time risk analysis, Laing said, but “they require HPC solutions that deploy quickly, integrate in a heterogeneous environment, and scale from workstation to cluster.”

Built on 64-bit Windows Server, the new platform essentially puts the Windows interface on top of high-speed compute clusters. “We’re providing supercomputing to the desktop guys, the financial analysts and the ones developing models — the guys doing real-time market calculations,” said Vince Mendillo, director of Microsoft’s Server & Tools Business Group, during a briefing. “Our goal is to accelerate the time to insight.”

Microsoft worked with dozens of companies in the financial industry to get their feedback to the server system, Laing said. One such company is Lloyds TSB, one of the largest banking groups in the UK. The IT director at Lloyds TSB Corporate Markets group in London, Ricky Higgins, reported that his team was able to stand up a new 64-node cluster in a very short time. “From bare hardware to first job submitted took barely overnight,” he said. “Due to market turmoil, we need to process data much more quickly than ever before.” Higgins said processing time has been cut by about 50 percent. “We’ve been able to greatly increase the number of transactions,” he said.

To speed up processing of financial workloads, Microsoft made a series of major changes to HPC Server. Instead of using Remote Installation Service to set up a cluster, HPC Server uses Windows Deployment Service, which the company says makes scaling much faster because it uses image multicasting to deploy nodes in parallel, but it’s also easier because a wizard system guides administrators through node configuration. A “to-do list” page walks the admin through the steps needed to configure a cluster, such as defining the network topology and setting up automatic deployment.

In fact, Microsoft lists simplified administration as one of the key benefits of the new platform. “Our goal was to provide efficient, scalable management tools for setting up and deploying a cluster. Reporting capabilities are very easy to use,” Mendillo said. Along with reporting, monitoring and diagnostic tools are all built into the new management console. A good example is the Heat Map, which gives an at-a-glance look at the health of the cluster.

Remote Direct Memory Access enables process-to-process communications, so “there’s very low latency when sending a process from one machine to another,” said Mendillo. Processes can write directly to the address space in another machine. The new job scheduler has been upgraded to work better with large clusters, handle more simultaneous chores, and be used in service-oriented applications, he said. The software now follows the Open Grid Forum’s HPC Basic Profile interface for interoperability with other schedulers.

Reliability is strengthened with advanced failover capabilities. “Redundancy on head nodes guarantees that the cluster will keep running, and job scheduler clients won’t see any change in the head node during the failover process,” explained Mendillo.

Microsoft has been working with independent software developers to build scalable applications for risk analysis, modeling trading, and other financial operations, as well as compilers, debuggers, performance optimizers, libraries, and other essential tools. Through integration with Visual Studio 2008, with its parallel programming environment, the new platform makes it easier to build software that takes advantage of distributed processing power, explained Medillo.

It’s not as if HPC is new in the financial district. Like Geno Valente, a VP for database analytics device developer XtremeData, said during a session yesterday, “Most people on Wall Street have some kind of HPC in the back room.”

But that system out back is often a Linux cluster. If Microsoft can’t replace that, it’ll work with it. “Interoperability with Linux systems, mixed cluster support, are essential,” Mendillo stated. “All the major file system vendors are supporting us, and our management package will allow administrators to manage Windows and Linux systems from a single console.”

Although its focus at this time of accelerated jitters is on the financial services segment, Microsoft is looking to bring high performance clusters to other industries with HPC Server. “We’re making high-end computing affordable, increasing productivity, and making it easier for companies to scale up to meet demand,” Laing said. “HPC Server will bring high performance to a much wider audience. It will eventually make it mainstream.”

You can download an evaluation copy at www.microsoft.com/hpc. Price of ownership is $475 per node.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire