Intel: CPUs Will Prevail Over Accelerators in HPC

By Michael Feldman

September 24, 2008

HPC hardware accelerators — GPUs, FPGAs, the Cell processor, and custom ASICs like the ClearSpeed floating point device — have captured the imagination of HPC users in search of higher performance and lower power consumption. While these offload engines continue to show impressive performance results for supercomputing workloads, Intel is sticking to its CPU guns to deliver HPC to the broader market. According to Richard Dracott, Intel’s general manager of the company’s High Performance Computing business unit, CPU multicore processors, and eventually manycore processors, will prevail over accelerator solutions in the financial services industry, as well as for HPC applications in general.

Dracott says he’s seen the pattern before where people get attracted to specialized hardware for particular applications. But in the end, he says, general-purpose CPUs turn out to deliver the best ROI. Dracott claims that to exploit acceleration in HPC, developers need to modify the software anyway, so they might as well modify it for multicore. “What we’re finding is that if someone is going to go to the effort of optimizing an application to take advantage of an offload engine, whatever it may be, the first thing they have to do is parallelize their code,” he told me.

To Intel’s credit, the company has developed a full-featured set of tools and libraries to help mainstream developers parallelize their codes for x86 hardware. With the six-core Dunnington in the field today and eight-core Nehalem processors just around the corner, developers will need all the help they can get to fully utilize the additional processing power.

In fact though, adding CPU-based multithreading parallelism to your app tends to be more difficult than adding data parallelism. The latter is the only type of parallelism accelerators are any good at. And if your workload can exploit data parallelism, this can be done rather straightforwardly. With the advent of NVIDIA’s CUDA, AMD’s Brook+, RapidMind’s development platform, FPGA C-based frameworks, and SDKs from ClearSpeed and other vendors, the programming of these devices has become simpler.

And it may get simpler yet. PGI compiler developer Michael Wolfe thinks there is no reason why high-level language compilers can’t take advantage of these offload engines. “We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future,” he wrote recently in his HPCwire column.

Of course, CPUs are not standing still performance-wise. According to Dracott, when financial customers were asked how long a 10x performance advantage over a CPU-based solution would have to be maintained to make it worth their while, they told him anywhere from 2-3 years up to as much as 7 years. For production environments, the software investment required to bring accelerators into the mix needs to account for re-testing and re-certification. In the case of the financial services industry (because of regulatory and other legal requirements), this can be a significant part of the effort. “And by the time they actually make the investment in the software, the general-purpose [CPU] hardware has caught up,” says Dracott.

Maybe. A lot of applications are already realizing much better than a 10x improvements in performance with hardware acceleration. SciComp, a company that offers derivatives pricing software, recently announced a “20-100X execution speed increase” for its pricing models. Other HPC workloads have done even better. And while the CPU hardware will eventually catch up to current accelerators, all silicon is moving up the performance ladder, roughly according to Moore’s Law. So the CPU-accelerator performance gap will in all likelihood remain.

Accelerators do have a steeper hill to climb in certain areas though. Except for the Cell processor, where a PowerPC core is built-in, all accelerators require a connection to a CPU host. Depending upon the nature of the connection (PCI, HyperTransport, QuickPath, etc.) the offload engine can become starved for data because of bandwidth limitations. In fact, the time spent talking to the host can eat up any performance gains realized through faster execution. More local store on the accelerator and careful programming can often mitigate this, but the general-purpose CPU has a built-in advantage here.

Dracott points out that the lack of double precision floating point capabilities and error correction code (ECC) memory limits accelerator deployment in many HPC production environments. This is especially true in the financial space, where predictability and reliability of results are paramount. But the latest generation of offload engines all support DP to some degree, and only GPUs have an ECC problem. ClearSpeed ASICs, in particular, have full-throttle 64-bit support plus enterprise-level ECC protection. GPUs, on the other hand, will have to deal with soft error protection in some systematic way to become a more widely deployed solution for technical computing. I’ve got to believe that NVIDIA and AMD will eventually add this capability to their GPU computing offerings.
 
The shortcomings of accelerator solutions have prevented much real-world deployment in production situations, according to Dracott. He thinks users will continue to experiment with offload engines for several more years, but with the exception of certain application niches, most will eventually end up back at the CPU. But interest in these more exotic solutions remains high in the HPC community. HPCwire’s Dennis Barker, at this week’s High Performance on Wall Street conference, reports that the hardware accelerator companies were drawing quite a crowd and a number of FPGA-accelerated products are already on the market. “Sellers of these products were all over the place, their booths were busy, and several sessions on the subject were standing-room only,” he writes.

And despite Intel’s commitment to the x86 CPU and Dracott’s take on the future of accelerators, the company has been evolving its position on co-processor acceleration. Intel’s (and IBM’s) Geneseo initiative to extend PCI Express for offload engines and its plans to license the new QuickPath interconnect technology would seem to indicate that the company hasn’t completely discounted acceleration. AMD, of course, has Torenzza, its own co-processor integration technology. Whether Intel is just hedging its bets to counter its rival or is genuinely committed to sharing the computing world with other architectures remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This