Intel: CPUs Will Prevail Over Accelerators in HPC

By Michael Feldman

September 24, 2008

HPC hardware accelerators — GPUs, FPGAs, the Cell processor, and custom ASICs like the ClearSpeed floating point device — have captured the imagination of HPC users in search of higher performance and lower power consumption. While these offload engines continue to show impressive performance results for supercomputing workloads, Intel is sticking to its CPU guns to deliver HPC to the broader market. According to Richard Dracott, Intel’s general manager of the company’s High Performance Computing business unit, CPU multicore processors, and eventually manycore processors, will prevail over accelerator solutions in the financial services industry, as well as for HPC applications in general.

Dracott says he’s seen the pattern before where people get attracted to specialized hardware for particular applications. But in the end, he says, general-purpose CPUs turn out to deliver the best ROI. Dracott claims that to exploit acceleration in HPC, developers need to modify the software anyway, so they might as well modify it for multicore. “What we’re finding is that if someone is going to go to the effort of optimizing an application to take advantage of an offload engine, whatever it may be, the first thing they have to do is parallelize their code,” he told me.

To Intel’s credit, the company has developed a full-featured set of tools and libraries to help mainstream developers parallelize their codes for x86 hardware. With the six-core Dunnington in the field today and eight-core Nehalem processors just around the corner, developers will need all the help they can get to fully utilize the additional processing power.

In fact though, adding CPU-based multithreading parallelism to your app tends to be more difficult than adding data parallelism. The latter is the only type of parallelism accelerators are any good at. And if your workload can exploit data parallelism, this can be done rather straightforwardly. With the advent of NVIDIA’s CUDA, AMD’s Brook+, RapidMind’s development platform, FPGA C-based frameworks, and SDKs from ClearSpeed and other vendors, the programming of these devices has become simpler.

And it may get simpler yet. PGI compiler developer Michael Wolfe thinks there is no reason why high-level language compilers can’t take advantage of these offload engines. “We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future,” he wrote recently in his HPCwire column.

Of course, CPUs are not standing still performance-wise. According to Dracott, when financial customers were asked how long a 10x performance advantage over a CPU-based solution would have to be maintained to make it worth their while, they told him anywhere from 2-3 years up to as much as 7 years. For production environments, the software investment required to bring accelerators into the mix needs to account for re-testing and re-certification. In the case of the financial services industry (because of regulatory and other legal requirements), this can be a significant part of the effort. “And by the time they actually make the investment in the software, the general-purpose [CPU] hardware has caught up,” says Dracott.

Maybe. A lot of applications are already realizing much better than a 10x improvements in performance with hardware acceleration. SciComp, a company that offers derivatives pricing software, recently announced a “20-100X execution speed increase” for its pricing models. Other HPC workloads have done even better. And while the CPU hardware will eventually catch up to current accelerators, all silicon is moving up the performance ladder, roughly according to Moore’s Law. So the CPU-accelerator performance gap will in all likelihood remain.

Accelerators do have a steeper hill to climb in certain areas though. Except for the Cell processor, where a PowerPC core is built-in, all accelerators require a connection to a CPU host. Depending upon the nature of the connection (PCI, HyperTransport, QuickPath, etc.) the offload engine can become starved for data because of bandwidth limitations. In fact, the time spent talking to the host can eat up any performance gains realized through faster execution. More local store on the accelerator and careful programming can often mitigate this, but the general-purpose CPU has a built-in advantage here.

Dracott points out that the lack of double precision floating point capabilities and error correction code (ECC) memory limits accelerator deployment in many HPC production environments. This is especially true in the financial space, where predictability and reliability of results are paramount. But the latest generation of offload engines all support DP to some degree, and only GPUs have an ECC problem. ClearSpeed ASICs, in particular, have full-throttle 64-bit support plus enterprise-level ECC protection. GPUs, on the other hand, will have to deal with soft error protection in some systematic way to become a more widely deployed solution for technical computing. I’ve got to believe that NVIDIA and AMD will eventually add this capability to their GPU computing offerings.
 
The shortcomings of accelerator solutions have prevented much real-world deployment in production situations, according to Dracott. He thinks users will continue to experiment with offload engines for several more years, but with the exception of certain application niches, most will eventually end up back at the CPU. But interest in these more exotic solutions remains high in the HPC community. HPCwire’s Dennis Barker, at this week’s High Performance on Wall Street conference, reports that the hardware accelerator companies were drawing quite a crowd and a number of FPGA-accelerated products are already on the market. “Sellers of these products were all over the place, their booths were busy, and several sessions on the subject were standing-room only,” he writes.

And despite Intel’s commitment to the x86 CPU and Dracott’s take on the future of accelerators, the company has been evolving its position on co-processor acceleration. Intel’s (and IBM’s) Geneseo initiative to extend PCI Express for offload engines and its plans to license the new QuickPath interconnect technology would seem to indicate that the company hasn’t completely discounted acceleration. AMD, of course, has Torenzza, its own co-processor integration technology. Whether Intel is just hedging its bets to counter its rival or is genuinely committed to sharing the computing world with other architectures remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This