Intel: CPUs Will Prevail Over Accelerators in HPC

By Michael Feldman

September 24, 2008

HPC hardware accelerators — GPUs, FPGAs, the Cell processor, and custom ASICs like the ClearSpeed floating point device — have captured the imagination of HPC users in search of higher performance and lower power consumption. While these offload engines continue to show impressive performance results for supercomputing workloads, Intel is sticking to its CPU guns to deliver HPC to the broader market. According to Richard Dracott, Intel’s general manager of the company’s High Performance Computing business unit, CPU multicore processors, and eventually manycore processors, will prevail over accelerator solutions in the financial services industry, as well as for HPC applications in general.

Dracott says he’s seen the pattern before where people get attracted to specialized hardware for particular applications. But in the end, he says, general-purpose CPUs turn out to deliver the best ROI. Dracott claims that to exploit acceleration in HPC, developers need to modify the software anyway, so they might as well modify it for multicore. “What we’re finding is that if someone is going to go to the effort of optimizing an application to take advantage of an offload engine, whatever it may be, the first thing they have to do is parallelize their code,” he told me.

To Intel’s credit, the company has developed a full-featured set of tools and libraries to help mainstream developers parallelize their codes for x86 hardware. With the six-core Dunnington in the field today and eight-core Nehalem processors just around the corner, developers will need all the help they can get to fully utilize the additional processing power.

In fact though, adding CPU-based multithreading parallelism to your app tends to be more difficult than adding data parallelism. The latter is the only type of parallelism accelerators are any good at. And if your workload can exploit data parallelism, this can be done rather straightforwardly. With the advent of NVIDIA’s CUDA, AMD’s Brook+, RapidMind’s development platform, FPGA C-based frameworks, and SDKs from ClearSpeed and other vendors, the programming of these devices has become simpler.

And it may get simpler yet. PGI compiler developer Michael Wolfe thinks there is no reason why high-level language compilers can’t take advantage of these offload engines. “We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future,” he wrote recently in his HPCwire column.

Of course, CPUs are not standing still performance-wise. According to Dracott, when financial customers were asked how long a 10x performance advantage over a CPU-based solution would have to be maintained to make it worth their while, they told him anywhere from 2-3 years up to as much as 7 years. For production environments, the software investment required to bring accelerators into the mix needs to account for re-testing and re-certification. In the case of the financial services industry (because of regulatory and other legal requirements), this can be a significant part of the effort. “And by the time they actually make the investment in the software, the general-purpose [CPU] hardware has caught up,” says Dracott.

Maybe. A lot of applications are already realizing much better than a 10x improvements in performance with hardware acceleration. SciComp, a company that offers derivatives pricing software, recently announced a “20-100X execution speed increase” for its pricing models. Other HPC workloads have done even better. And while the CPU hardware will eventually catch up to current accelerators, all silicon is moving up the performance ladder, roughly according to Moore’s Law. So the CPU-accelerator performance gap will in all likelihood remain.

Accelerators do have a steeper hill to climb in certain areas though. Except for the Cell processor, where a PowerPC core is built-in, all accelerators require a connection to a CPU host. Depending upon the nature of the connection (PCI, HyperTransport, QuickPath, etc.) the offload engine can become starved for data because of bandwidth limitations. In fact, the time spent talking to the host can eat up any performance gains realized through faster execution. More local store on the accelerator and careful programming can often mitigate this, but the general-purpose CPU has a built-in advantage here.

Dracott points out that the lack of double precision floating point capabilities and error correction code (ECC) memory limits accelerator deployment in many HPC production environments. This is especially true in the financial space, where predictability and reliability of results are paramount. But the latest generation of offload engines all support DP to some degree, and only GPUs have an ECC problem. ClearSpeed ASICs, in particular, have full-throttle 64-bit support plus enterprise-level ECC protection. GPUs, on the other hand, will have to deal with soft error protection in some systematic way to become a more widely deployed solution for technical computing. I’ve got to believe that NVIDIA and AMD will eventually add this capability to their GPU computing offerings.
 
The shortcomings of accelerator solutions have prevented much real-world deployment in production situations, according to Dracott. He thinks users will continue to experiment with offload engines for several more years, but with the exception of certain application niches, most will eventually end up back at the CPU. But interest in these more exotic solutions remains high in the HPC community. HPCwire’s Dennis Barker, at this week’s High Performance on Wall Street conference, reports that the hardware accelerator companies were drawing quite a crowd and a number of FPGA-accelerated products are already on the market. “Sellers of these products were all over the place, their booths were busy, and several sessions on the subject were standing-room only,” he writes.

And despite Intel’s commitment to the x86 CPU and Dracott’s take on the future of accelerators, the company has been evolving its position on co-processor acceleration. Intel’s (and IBM’s) Geneseo initiative to extend PCI Express for offload engines and its plans to license the new QuickPath interconnect technology would seem to indicate that the company hasn’t completely discounted acceleration. AMD, of course, has Torenzza, its own co-processor integration technology. Whether Intel is just hedging its bets to counter its rival or is genuinely committed to sharing the computing world with other architectures remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This