Intel: CPUs Will Prevail Over Accelerators in HPC

By Michael Feldman

September 24, 2008

HPC hardware accelerators — GPUs, FPGAs, the Cell processor, and custom ASICs like the ClearSpeed floating point device — have captured the imagination of HPC users in search of higher performance and lower power consumption. While these offload engines continue to show impressive performance results for supercomputing workloads, Intel is sticking to its CPU guns to deliver HPC to the broader market. According to Richard Dracott, Intel’s general manager of the company’s High Performance Computing business unit, CPU multicore processors, and eventually manycore processors, will prevail over accelerator solutions in the financial services industry, as well as for HPC applications in general.

Dracott says he’s seen the pattern before where people get attracted to specialized hardware for particular applications. But in the end, he says, general-purpose CPUs turn out to deliver the best ROI. Dracott claims that to exploit acceleration in HPC, developers need to modify the software anyway, so they might as well modify it for multicore. “What we’re finding is that if someone is going to go to the effort of optimizing an application to take advantage of an offload engine, whatever it may be, the first thing they have to do is parallelize their code,” he told me.

To Intel’s credit, the company has developed a full-featured set of tools and libraries to help mainstream developers parallelize their codes for x86 hardware. With the six-core Dunnington in the field today and eight-core Nehalem processors just around the corner, developers will need all the help they can get to fully utilize the additional processing power.

In fact though, adding CPU-based multithreading parallelism to your app tends to be more difficult than adding data parallelism. The latter is the only type of parallelism accelerators are any good at. And if your workload can exploit data parallelism, this can be done rather straightforwardly. With the advent of NVIDIA’s CUDA, AMD’s Brook+, RapidMind’s development platform, FPGA C-based frameworks, and SDKs from ClearSpeed and other vendors, the programming of these devices has become simpler.

And it may get simpler yet. PGI compiler developer Michael Wolfe thinks there is no reason why high-level language compilers can’t take advantage of these offload engines. “We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future,” he wrote recently in his HPCwire column.

Of course, CPUs are not standing still performance-wise. According to Dracott, when financial customers were asked how long a 10x performance advantage over a CPU-based solution would have to be maintained to make it worth their while, they told him anywhere from 2-3 years up to as much as 7 years. For production environments, the software investment required to bring accelerators into the mix needs to account for re-testing and re-certification. In the case of the financial services industry (because of regulatory and other legal requirements), this can be a significant part of the effort. “And by the time they actually make the investment in the software, the general-purpose [CPU] hardware has caught up,” says Dracott.

Maybe. A lot of applications are already realizing much better than a 10x improvements in performance with hardware acceleration. SciComp, a company that offers derivatives pricing software, recently announced a “20-100X execution speed increase” for its pricing models. Other HPC workloads have done even better. And while the CPU hardware will eventually catch up to current accelerators, all silicon is moving up the performance ladder, roughly according to Moore’s Law. So the CPU-accelerator performance gap will in all likelihood remain.

Accelerators do have a steeper hill to climb in certain areas though. Except for the Cell processor, where a PowerPC core is built-in, all accelerators require a connection to a CPU host. Depending upon the nature of the connection (PCI, HyperTransport, QuickPath, etc.) the offload engine can become starved for data because of bandwidth limitations. In fact, the time spent talking to the host can eat up any performance gains realized through faster execution. More local store on the accelerator and careful programming can often mitigate this, but the general-purpose CPU has a built-in advantage here.

Dracott points out that the lack of double precision floating point capabilities and error correction code (ECC) memory limits accelerator deployment in many HPC production environments. This is especially true in the financial space, where predictability and reliability of results are paramount. But the latest generation of offload engines all support DP to some degree, and only GPUs have an ECC problem. ClearSpeed ASICs, in particular, have full-throttle 64-bit support plus enterprise-level ECC protection. GPUs, on the other hand, will have to deal with soft error protection in some systematic way to become a more widely deployed solution for technical computing. I’ve got to believe that NVIDIA and AMD will eventually add this capability to their GPU computing offerings.
 
The shortcomings of accelerator solutions have prevented much real-world deployment in production situations, according to Dracott. He thinks users will continue to experiment with offload engines for several more years, but with the exception of certain application niches, most will eventually end up back at the CPU. But interest in these more exotic solutions remains high in the HPC community. HPCwire’s Dennis Barker, at this week’s High Performance on Wall Street conference, reports that the hardware accelerator companies were drawing quite a crowd and a number of FPGA-accelerated products are already on the market. “Sellers of these products were all over the place, their booths were busy, and several sessions on the subject were standing-room only,” he writes.

And despite Intel’s commitment to the x86 CPU and Dracott’s take on the future of accelerators, the company has been evolving its position on co-processor acceleration. Intel’s (and IBM’s) Geneseo initiative to extend PCI Express for offload engines and its plans to license the new QuickPath interconnect technology would seem to indicate that the company hasn’t completely discounted acceleration. AMD, of course, has Torenzza, its own co-processor integration technology. Whether Intel is just hedging its bets to counter its rival or is genuinely committed to sharing the computing world with other architectures remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This