Network-Attached Memory: Virtualization for Java Environments

By Dennis Barker

October 6, 2008

Easing application scalability across a cluster is a problem being solved in a variety of ways. Terracotta does it with memory – network-attached memory, to be exact. The company’s infrastructure software creates an expandable/retractable pool of shared memory that Java applications can tap to meet increasing demand.

Network-attached memory is analogous to network-attached storage (NAS) in that it provides a service to thousands of connected clients transparently. As NAS is transparent underneath the file system, network-attached memory is transparent underneath the Java language, says Jeff Hartley, vice president of products and marketing at Terracotta. Objects are manipulated and kept consistent in memory like files are in NAS, but in Terracotta’s memory pool, everything can be massively scaled out.

“Another way to think of it is virtualization for the Java environment,” Hartley says. “In the same way that a hypervisor slices a machine into several logical machines, Terracotta takes many physical machines and connects them as one logical machine.”

Developers don’t have to change their applications to get clustering behavior. A clustered application looks the same as a Java application. Essentially, users tell Terracotta what to do in a config file, Hartley says, and the software injects that behavior into the application at runtime. Not only is there is no API required to send messages across the cluster, he says, there is no API at all. Terracotta uses plain old Java objects and plugs into familiar frameworks like Spring, Hibernate and EHcache so developers can continue using the same tools, stacks and development models.

“We provide an open source clustering solution,” says Hartley. “It’s scalability and high availability for Java enterprise apps, without having to change your application code. We actually hook into the Java virtual machine and share data.”

Beside simplified clustering and scalable performance, Hartley says Terracotta’s approach also brings “high availability without tradeoffs” — the possibility of reducing database bottlenecks, achieving better use of hardware, lowering maintenance costs, and, because the software takes care of adding clustering capabilities, focusing on developing new applications rather than retooling old ones.

“We’re working at the level of memory. If you have App Server A die, the user gets sent to App Server B, and all the data is sent from memory to B without the user even realizing it,” Hartley says. “We provide high availability by putting everything in memory instead of adding racks of servers.”

When you add a server to handle demand, it just “joins the group.” “You don’t have to implement anything. Just add the servers and we make them members of the cluster’s shared memory pool. Our server keeps your server’s data in sync,” Hartley says. Changes to one virtual machine are instantaneously reflected to every virtual machine throughout the cluster that needs to know.

Because data can be shared between Java virtual machines and processed at in-memory speeds, some customers use the software to take load off their databases. Transient data like user session info or shopping cart info can be kept and processed in memory, while only critical results are sent to and kept in the database. “Terracotta is used to handle the work-in-progress data while a process is running, and only the completed data goes to the database. As a result, some of our users have been able to reduce database utilization by as much as 70 percent and not have to buy more database licenses to meet increased workload,” Hartley says.

Eliminating mundane work for IT staff is one of Terracotta’s other major selling points. As company CTO Ari Zilka explains in a video tour of the software, “You don’t have to write the plumbing or maintain the plumbing. …You can run an app on two servers at midnight and on 20 servers at noon. It frees IT to run apps the way they need to run them” and focus development time on more important business issues, he says.

Deployment involves two primary components: client nodes and the Terracotta server array. Nodes run on standard Java VMs, and each node corresponds to a Java process in the cluster (e.g., the application server). Terracotta is loaded into each VM at startup. The Terracotta server array provides the intelligence to orchestrate all the nodes in the cluster, synchronize activity between them, replicate data and handle storing data to disk. The array can run in an active-passive pair configuration for high availability that can achieve tens of thousands of requests per second, the company says. Running multiple instances of the Terracotta server in active-passive mode guarantees that a failure won’t compromise the cluster, the company says.

“We’re a very fundamental technology. We’re not a grid solution, we’re not a cloud solution. We’re network-attached memory — distributed memory that sits right below the applications, and can be used for all kinds of things,” explains Hartley.

Demanding Customers

Customers running Terracotta typically have one thing in common: unpredictable numbers of demanding users. (Zilka used to be chief architect at Walmart.com, so he knows about building infrastructure to deal with traffic spikes of epic proportion.) The user list includes big names familiar with meeting heavy online demand, including Adobe, MapQuest, BBC, Electronic Arts, PartyGaming (PartyPoker.com, etc.), and financial services companies like JP Morgan and Mizuho Securities.

An online multiplayer gaming company that wishes to remain unnamed uses clustered servers to not just host games, but also to coordinate and track player activities. It chose Terracotta as its scale-out solution for several reasons: (1) it works behind the scenes, at byte-code level, providing distributed heap memory across multiple Java VMs; (2) developers can use the standard Java semantics for synchronizing access to shared objects; (3) “impressive horizontal scalability” enabled by just adding more server nodes and not having to use databases and caches to manage shared data; (4) no single point of failure; and (5) it’s open source, so the software doesn’t add to the bottom line and doesn’t require a purchase order to get started.

Mark Turansky, a software architect currently working in the health care industry, has written about his experience using Terracotta. “With enabling software like Terracotta, clustering becomes easy. You’ve still got to design your software to take advantage of parallelism, but the act of running programs in parallel is no longer difficult. …It invisibly and magically clusters your Java classes via configuration,” Turansky writes. “Distributing code and running massively parallel programs used to be difficult. It required complex architectures and expensive application servers. This is accidental complexity. Advances in software development — like Terracotta, GridGain, Spring, and other FOSS [free open source] programs — dramatically reduce if not eliminate the accidental complexity of distributing your programs to a cluster of machines.”

Gnip, a service that aggregates and distributes feeds from sites like Twitter and Digg to users of services like Plaxo, runs its system on Amazon’s EC2 but chose Terracotta for node replication at the memory level. A post on the company’s site explains: “The prospect of just writing our app and thinking of it as a single thing, rather than ‘how does all this state get replicated across n number of nodes’ was soooo appealing.”

Terracotta has just released version 2.7, which the company says is more tightly integrated with frameworks like Spring and Glassfish, and adds better management and visualization features, improved garbage collection and the ability to apply hot patches. It is available for download at www. terracotta.org.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This