Network-Attached Memory: Virtualization for Java Environments

By Dennis Barker

October 6, 2008

Easing application scalability across a cluster is a problem being solved in a variety of ways. Terracotta does it with memory – network-attached memory, to be exact. The company’s infrastructure software creates an expandable/retractable pool of shared memory that Java applications can tap to meet increasing demand.

Network-attached memory is analogous to network-attached storage (NAS) in that it provides a service to thousands of connected clients transparently. As NAS is transparent underneath the file system, network-attached memory is transparent underneath the Java language, says Jeff Hartley, vice president of products and marketing at Terracotta. Objects are manipulated and kept consistent in memory like files are in NAS, but in Terracotta’s memory pool, everything can be massively scaled out.

“Another way to think of it is virtualization for the Java environment,” Hartley says. “In the same way that a hypervisor slices a machine into several logical machines, Terracotta takes many physical machines and connects them as one logical machine.”

Developers don’t have to change their applications to get clustering behavior. A clustered application looks the same as a Java application. Essentially, users tell Terracotta what to do in a config file, Hartley says, and the software injects that behavior into the application at runtime. Not only is there is no API required to send messages across the cluster, he says, there is no API at all. Terracotta uses plain old Java objects and plugs into familiar frameworks like Spring, Hibernate and EHcache so developers can continue using the same tools, stacks and development models.

“We provide an open source clustering solution,” says Hartley. “It’s scalability and high availability for Java enterprise apps, without having to change your application code. We actually hook into the Java virtual machine and share data.”

Beside simplified clustering and scalable performance, Hartley says Terracotta’s approach also brings “high availability without tradeoffs” — the possibility of reducing database bottlenecks, achieving better use of hardware, lowering maintenance costs, and, because the software takes care of adding clustering capabilities, focusing on developing new applications rather than retooling old ones.

“We’re working at the level of memory. If you have App Server A die, the user gets sent to App Server B, and all the data is sent from memory to B without the user even realizing it,” Hartley says. “We provide high availability by putting everything in memory instead of adding racks of servers.”

When you add a server to handle demand, it just “joins the group.” “You don’t have to implement anything. Just add the servers and we make them members of the cluster’s shared memory pool. Our server keeps your server’s data in sync,” Hartley says. Changes to one virtual machine are instantaneously reflected to every virtual machine throughout the cluster that needs to know.

Because data can be shared between Java virtual machines and processed at in-memory speeds, some customers use the software to take load off their databases. Transient data like user session info or shopping cart info can be kept and processed in memory, while only critical results are sent to and kept in the database. “Terracotta is used to handle the work-in-progress data while a process is running, and only the completed data goes to the database. As a result, some of our users have been able to reduce database utilization by as much as 70 percent and not have to buy more database licenses to meet increased workload,” Hartley says.

Eliminating mundane work for IT staff is one of Terracotta’s other major selling points. As company CTO Ari Zilka explains in a video tour of the software, “You don’t have to write the plumbing or maintain the plumbing. …You can run an app on two servers at midnight and on 20 servers at noon. It frees IT to run apps the way they need to run them” and focus development time on more important business issues, he says.

Deployment involves two primary components: client nodes and the Terracotta server array. Nodes run on standard Java VMs, and each node corresponds to a Java process in the cluster (e.g., the application server). Terracotta is loaded into each VM at startup. The Terracotta server array provides the intelligence to orchestrate all the nodes in the cluster, synchronize activity between them, replicate data and handle storing data to disk. The array can run in an active-passive pair configuration for high availability that can achieve tens of thousands of requests per second, the company says. Running multiple instances of the Terracotta server in active-passive mode guarantees that a failure won’t compromise the cluster, the company says.

“We’re a very fundamental technology. We’re not a grid solution, we’re not a cloud solution. We’re network-attached memory — distributed memory that sits right below the applications, and can be used for all kinds of things,” explains Hartley.

Demanding Customers

Customers running Terracotta typically have one thing in common: unpredictable numbers of demanding users. (Zilka used to be chief architect at Walmart.com, so he knows about building infrastructure to deal with traffic spikes of epic proportion.) The user list includes big names familiar with meeting heavy online demand, including Adobe, MapQuest, BBC, Electronic Arts, PartyGaming (PartyPoker.com, etc.), and financial services companies like JP Morgan and Mizuho Securities.

An online multiplayer gaming company that wishes to remain unnamed uses clustered servers to not just host games, but also to coordinate and track player activities. It chose Terracotta as its scale-out solution for several reasons: (1) it works behind the scenes, at byte-code level, providing distributed heap memory across multiple Java VMs; (2) developers can use the standard Java semantics for synchronizing access to shared objects; (3) “impressive horizontal scalability” enabled by just adding more server nodes and not having to use databases and caches to manage shared data; (4) no single point of failure; and (5) it’s open source, so the software doesn’t add to the bottom line and doesn’t require a purchase order to get started.

Mark Turansky, a software architect currently working in the health care industry, has written about his experience using Terracotta. “With enabling software like Terracotta, clustering becomes easy. You’ve still got to design your software to take advantage of parallelism, but the act of running programs in parallel is no longer difficult. …It invisibly and magically clusters your Java classes via configuration,” Turansky writes. “Distributing code and running massively parallel programs used to be difficult. It required complex architectures and expensive application servers. This is accidental complexity. Advances in software development — like Terracotta, GridGain, Spring, and other FOSS [free open source] programs — dramatically reduce if not eliminate the accidental complexity of distributing your programs to a cluster of machines.”

Gnip, a service that aggregates and distributes feeds from sites like Twitter and Digg to users of services like Plaxo, runs its system on Amazon’s EC2 but chose Terracotta for node replication at the memory level. A post on the company’s site explains: “The prospect of just writing our app and thinking of it as a single thing, rather than ‘how does all this state get replicated across n number of nodes’ was soooo appealing.”

Terracotta has just released version 2.7, which the company says is more tightly integrated with frameworks like Spring and Glassfish, and adds better management and visualization features, improved garbage collection and the ability to apply hot patches. It is available for download at www. terracotta.org.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This