The Grid-Cloud Connection (Pt. I): Compare and Contrast

By Derrick Harris

October 8, 2008

Grid computing. Cloud computing. Are there any IT paradigms that have garnered more hype and more skepticism without most people even knowing what they mean? Probably not, but maybe that is because the terms themselves have no real meanings to most IT consumers, just connotations.

And connotations can be scary. Burned to some degree by the existing confusion surrounding grid computing, many grid vendors have drastically cut the term from their marketing strategies. Learning from what might be perceived as mistakes, these vendors are not so quick to latch onto cloud computing. However, many of their new directions could easily fall under the cloud umbrella, and those in the know readily acknowledge that grid technologies underlie the cloud.

So, what’s a middleware vendor to do?

First, Compare

Within the Data Center Business Division at Univa UD, messaging around grid computing has been all but eliminated as the division attempts to build traction for its Reliance datacenter orchestration product (from which the company also has nixed the Grid MP middleware component). What division general manager Alex Brown calls the “traffic cop or brains of the operation,” Reliance combines application awareness, closed-loop orchestration and SLA automation to deliver optimal application performance, and Univa UD customers and prospects view it as a key part of their cloud or utility infrastructures.

Although no one is talking about grid computing, Univa UD’s Gordon Jackson says the company’s experiences with grid and large-scale distributing processing management feed directly into its success with Reliance, especially as it relates to resource management and distribution. Jackson is the technical director of the Data Center Business Division former virtualization evangelist at DataSynapse.

Brown agrees that a real cloud-like solution requires a significant understanding of grid concepts. “However, because people thought of grid as so specialized, it got a lot of baggage,” he explains. “So while a lot of the core technology is very relevant, a lot of the terminology and a lot of the old processes are not. In fact, they hinder the adoption of the technology for cloud.”

Ivan Casanova, vice president of product marketing at the aforementioned DataSynapse sees a connection, too, calling grid computing the starting point for cloud computing — “a proof point for shared and dynamic infrastructure.” A big part of cloud computing is the ability to scale based on demand, and grid computing middleware is a great method for doing so, he says. (Casanova also notes that SOA is the architectural model for cloud computing, and DataSynapse has customers deploying SOAs and using the company’s GridServer product to scale those services.)

On the data grid front, Oracle’s Cameron Purdy, vice president of Fusion Middleware, says, “Data grid technology … is almost essential in any transactional processing or other data-intensive system that would be deployed into a cloud environment. I can’t imagine how you would run a data-intensive application across any number of servers in that type of environment without the ability to share and coordinate access to and operate and react to changes and events occurring to that information.”

According to Platform Computing Chairman and CEO Songnian Zhou, his customers definitely see the grid-cloud connection as they move from HPC-focused enterprise grids to general-purpose, often virtualized, shared-services platforms. “They may not call it cloud, they may not call it on-demand datacenter, but they clearly are doing it,” he says.

The transition from grid to cloud, at least internally, Zhou says, is really a matter of evolution: the architectures and goals are the same, but the scope is different. As users move from HPC workloads to more generic workloads, they add components like J2EE middleware and hypervisors to enable more dynamic applications and increase mobility. “The tools and containers need to be brought to the plate, but [in terms of] fundamental architecture and approach, I don’t see much of a difference between grid and the cloud or on-demand or dynamic datacenter,” he says. “It’s a continuous evolution and expansion … away from the siloed client servers.”

Univa UD’s Jackson also sees this move happening. Even in HPC, he believes, grid is ripe to become a platform for serving multiple applications and classes of users. “[A]s soon as you start applying the intelligence to differentiate between the platinum customer and the bronze customer, or the applications … and services I need to execute on behalf of those customers, then I think you’ve taken your grid and you’ve turned it into a utility infrastructure,” he says. Moving discrete grids into one big, intelligent resource pool means the most bang for the buck for the corporation, he added.

Paul Strong, distinguished engineer at eBay Research Labs and active Open Grid Forum participant, isn’t even sure we should draw the distinction between so-called internal clouds and service-oriented grids. In either case, users are leveraging shared infrastructures and virtualization to achieve high utilization and application flexibility based on changes in workloads and business needs. Essentially, Strong says, users are solving the same problems with the same core technologies.

This is true even for eBay’s infrastructure, which Strong has explained as a grid for years. There are many “cloudy” aspects to eBay’s infrastructure, he says, including a heavily virtualized database architecture to allow for massive scalability, and global service delivery backed up by SLAs, continuous availability and security. “By some definition of the word,” he acknowledges, “I would say we’ve been doing aspects of cloud computing for a while.”

Second, Contrast

There are, however, differences between the grid and the cloud, especially, but not exclusively, where external cloud services are involved. Univa UD’s Brown makes a marked distinction between the two paradigms. For him, grid computing (on the enterprise front, at least) takes place inside the firewall. Apparently, Univa UD also notices grid computing’s HPC connotation, as the company has moved its Grid MP middleware to its HPC division, leaving (as noted above) the datacenter division to focus on Reliance and its automation capabilities.

A similar mindset seems to be present at Platform. Although not formally in place, Zhou says the company is moving toward two distinct foci — HPC and the datacenter. Regardless of the technological similarities, customers see grid computing being part of the former and cloud computing (to whatever degree the term arises) being part of the latter. As the datacenter division takes shape, Zhou says, “We will not emphasize grid much because for datacenters, I think, grid is foreign. It has too much connotation, it is tainted from the HPC or research and government space, and it’s too complex.”

At DataSynapse, the difference is very application-focused. Casanova believes grid addresses a specific class of applications, which have been successfully optimized using the company’s GridServer product. When customers wanted to run a more general class of applications on a shared, dynamic infrastructure, the result was DataSynapse’s FabricServer product. Going forward, both are part of the company’s greater application-focused cloud-like strategy.

“I don’t think people started out envisioning grid computing to be this seamless model where all these enterprise services or different types of applications were running in a cloud, they were universally accessible, they were technology-agnostic,” says Casanova. “I think they started that conversation around ‘I really need to scale up this application from a performance perspective, and I want to leverage commodity hardware and systems I already own to help me [experience] an order of magnitude improvement [in how] this important application executes.'” The cloud movement inside organizations, he adds, really has been driven by what they see Internet companies like Amazon doing with their infrastructures.

Further illustrating the fundamental differences between the paradigms, Casanova cites capabilities that must be added to grid solutions if they are to be repackaged and sold as cloud solutions: automated provisioning, horizontal scalability and visibility into utilization. For corporate users, he says, utilization insight helps them define policies to further automate and maximize resource usage. For cloud service providers, he says, usage data becomes the foundation for their chargeback models.

eBay’s Strong views grids and external clouds “less in terms of technology and more in terms of the way we think differently about business.” With cloud computing, he says, all a company needs to do is codify its one differentiating idea. The company can obtain everything else — infrastructure, non-critical business services, etc. — from the cloud.

Grid computing, Strong explains, was about building and optimizing infrastructure to run certain types of workloads. Cloud computing complements and advances that notion, but also helps companies move away from the “nitty-gritty” aspects, he says. It’s more about flexibly delivering services within an organization (internal cloud) or flexibly receiving commodity services (external cloud). “I think clouds take us to that next conceptual step of moving beyond … the weeds, where a lot of the grid work was, to [asking] ‘How do we move this closer to the business and deliver the right value for the business?'” Strong says. “The set of underlying technologies are, in essence, the same, but the discussion has changed.”

Up next: The second half of our look at the nexus of grid computing and cloud computing will focus on the future dynamic datacenter-oriented strategies of these old-guard grid computing vendors. We’ll look at how, if at all, they plan to leverage cloud computing hype as a marketing term, and how the idea of cloud computing actually relates to what they’re doing.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This