Velocity Micro Makes an HPC Play

By Michael Feldman

October 9, 2008

The GPGPU phenomenon is continuing to attract lots of attention in the high performance computing community and is starting to bring some new players into the market. The introduction of commodity GPU processors offering teraflop-level performance suggests supercomputing can now be had for near-PC prices. The current challenge is to package those GPUs so that their power can be tapped by the average HPC practitioner.

The latest attempt at this comes from Velocity Micro, which until this week was known for its bleeding-edge PCs and desktop systems for power users, especially gaming enthusiasts. On Monday, the company jumped into the HPC market by launching a new line of NVIDIA Tesla GPU-accelerated HPC workstations. The products consist of customizable desktop systems based on Intel CPUs and NVIDIA’s newest C1060 card. The C1060 is based on NVIDIA’s 10-series GPU, which offers almost a teraflop of peak single precision performance (and around 100 gigaflops of double precision). With 4 GB of local memory, the C1060 has more than twice the capacity of NVIDIA’s first generation C870.

The Velocity workstations, which range in price from $3,995 to $16,995, come preloaded with the CUDA SDK (NVIDIA’s C programming framework for GPU computing), along with either Window XP or Fedora Core 8. The hardware is available in three basic configurations: an entry level system containing a dual- or quad-core Intel Core 2 processor and an optional C1060 Tesla card; a mid-level system with almost the same Intel CPU options, but up to two C1060s; and a high-end box with single- or dual-socket Xeon quad-core CPUs and up to three C1060s. The company rates the three configurations at 1, 2 and 3 teraflops, respectively, with the GPU card or cards providing most of the horsepower. NVIDIA Quadro GPUs are also available to drive video, enabling GPU computing and visualization to take place simultaneously.

The three-teraflop configuration with dual qual-core Xeons, three Tesla cards and a Quadro GPU, consumes plenty of juice. In an attempt to max out the system, the Velocity engineers have been able to drive power consumption up to 950 watts, and that’s probably the most a real-world application would consume. The systems are all air-cooled, presumably very effectively, since hot chips are standard gear on most Velocity systems. In fact, for the company’s high-end consumer boxes, overclocking is fairly common, although not for the HPC product line.

The GPU-equipped machines are designed for typical HPC end-users: scientists, engineers and other technical analysts. Since HPC is new territory for Velocity, the company has partnered with James River Technical (JRT), a reseller that specializes in the HPC market. JRT facilitates deals for vendors like SGI, especially for the higher education and government markets. The Velocity-JRT partnership is an especially nice fit here since the lowest hanging fruit for these new workstations is likely to be researchers at universities and government labs.

These types of users have already shown a lot of interest in GPU-accelerated computing and are on the lookout for production-ready systems. According to JRT president Tom Mountcastle, many of their customers are constrained more by budget, than imagination. “This appeals to the research community because they like being out there on the edge,” he said.

On the other hand, since the machines will be on people’s desktops, the big government labs and the universities aren’t interested in inexpensive systems that lack vendor support, which chews up a lot of system administration time. In this area, Velocity has a good track record. Over the years, the company has collected numerous award for craftsmanship, service and reliability from the likes of PC Magazine, CNET, and PC World.

The company is also among the first, if not the first, to take advantage of the latest hardware technology for its consumer products. In that sense, it sees the new Tesla hardware and CUDA as a game-changer for HPC. From Velocity’s perspective, NVIDIA’s introduction of the more powerful 10-series GPUs and the maturity of the CUDA software stack indicate that the technology pieces are now in place for a commercially-viable high performance PC. “We’ve determined there is a hole in the market for entry-level high performance computing and that’s where our product will be focused,” said Randy Copeland, Velocity Micro’s CEO and president.

CUDA, in particular, seems to have reached a critical mass. A quick tour of NVIDIA’s CUDA site reveals dozens of academic codes and a smattering of commercial applications and libraries that have been accelerated. Application areas include the usual HPC verticals: finance, life sciences, oil & gas, EDA, digital content creation and basic science research. A number of bindings and libraries are also now available so that Python, MATLAB, and other environments can tap into GPGPU.

Now with the 10-series Tesla products due to be released this month, OEMs and integrators can construct GPU-equipped servers and desktop boxes with double-precision floating point support. Presumably, workstation vendors like Dell and HP could build accelerated HPC desktop systems, but since the demand for these machines is still largely unknown, these firms will probably be content to watch more specialized companies like Velocity from the sidelines. Likewise, IBM could develop an equivalent Cell-BE based workstation, but the market for such a system is likely to be much more constrained than ones based on the more ubiquitous GPU.

It was less than a month ago that Cray introduced its own entry-level supercomputer, the CX1. Whereas the Velocity offering is essentially an SMP machine with GPU accleration, the CX1 is the more traditional cluster architecture, but scaled down for personal use. JRT, which sells both systems, seems to be covering its bases here. It’s quite possible both machines can find their own niches — the CX1 for more traditional MPI-based applications and the Velocity boxes for more global address apps that lend themselves to acceleration. The CX1 is also in a higher price band, with the least expensive configuration starting at $25,000 — about $10,000 more than the top-of-the-line Velocity machine.

Even though the first Velocity systems just hit the streets this week, the company already has a second generation in the works. They intend to quickly move to four-socket CPU configurations, and will incorporate the Nehalem processor when it becomes available later this year. Further down the road, it may be possible to hook the workstations together for applications requiring greater scale.

If Velocity Micro can make a go of this, the “Attack of the Killer Micros” saga will have added a new chapter. Instead of just commodity microprocessor hardware invading HPC’s turf, PC vendors themselves could start eating into the market from the bottom up. Meanwhile, it will be interesting to see if any other desktop vendors are tempted to jump into the HPC arena.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This