Accelerators in the Data Center — Green Is In

By Michael Feldman

October 10, 2008

In the data center, the quest for greater performance — while keeping power, cooling and space concerns in check — is providing significant challenges for companies. According to a recent Environmental Protection Agency report, power use in data centers doubled from 2000 to 2006 and now accounts for about 1.5 percent of U.S. electricity consumption. Faced with an array of increasing complex challenges, data center managers may do well to take a look at hardware accelerators as a means to achieve more application performance, in less space and with less power.

Accelerators offer scientists, engineers and analysts a way to offload computationally intensive sections of applications to co-processors that are designed to perform a subset of the functions of a general purpose processor, but run them at higher speed, providing massive jumps in performance. In addition, these processors, specialized for computational tasks, consume less power and cooling resources while dramatically reducing the footprint in the data center.

“Accelerators can help address the need for higher performance with more efficient use of power and space, saving data center resources” says Glenn Lupton, engineering team leader in HP’s Accelerator Program.

Question: There are a number of accelerators in the market today. Can you give us a breakdown by type?

Lupton: One of the most common accelerators in use today are Graphics Processing Units (GPUs), highly parallel processors capable of 100’s of gigaflops per second that were originally designed to accelerate graphics applications, but now include special features for high-performance parallel computing. Competition among the GPU vendors for market share in the personal computer (PC) graphics gaming market has driven technological advancements in graphics cards. Researchers have been investigating their usage for high performance computing for a number of years with success in many areas with large-scale deployments starting this year. Both AMD and NVIDIA have product lines specialized for high-performance computing, specifically NVIDIA Tesla and AMD Stream. Field Programmable Gate Arrays (FPGAs) have a history of being used to implement special purpose circuits. They are now being applied to high performance computing problems. Application Specific Integrated Circuits (ASICs) provide custom silicon for accelerating high performance computing.

Question: What are the advantages of GPU-based accelerators?

Lupton: The latest NVIDIA Tesla GPUs can provide up to a teraflop of performance in a single GPU, theoretically. In 2U of rack space, you can put a 1U dual quad core server and a 1U GPU box with 4 GPUs, giving you potentially over 4 teraflops in 2U.

GPUs offer a lot of computing power for the amount of rack space that they occupy, but GPUs benefit from host servers that can deliver multiple, high-bandwidth PCI Express slots. Not many servers can meet these requirements. The combination of the HP DL160G5 1U server and the NVIDIA Tesla S870 and its follow-on, the Tesla S1070, is an excellent match of server with GPU and customers can team one or two DL160’s with the S870, depending on the ratio of GPUs to CPUs needed for an application.

The GPU vendors, NVIDIA and AMD/ATI, are providing programming tools and libraries for their specific products. An alternative, RapidMind, provides a product for programming both GPU and multi-core targets.

Question: What do custom ASIC accelerators offer?

Lupton: ASICs can provide application acceleration without impacting power, cooling or space requirements. ClearSpeed’s Advance e710 and e720 accelerators deliver peak 96 gigaflops of 64-bit, double precision performance, ECC error correction, require no additional space and consume minimal additional power, about 25 watts. ClearSpeed has measured over a 50 percent performance increase on HP BladeSystem c-Class server blades running Linpack. ClearSpeed libraries can boost application performance with no application changes and their cards go into otherwise unused PCI Express slots in servers. The ClearSpeed Advance e720 card is available on HP BladeSystem c-Class servers and the e710 goes into standard 8x PCI Express slots in HP ProLiant rack mount servers.

Question: What about FPGAs?

Lupton: FPGAs allow developers to create custom circuits tailored to the computational core of a particular application. They achieve performance through parallelism and pipelining versus a high clock speed. This enables them to deliver high performance per watt. However, it is much harder to implement a solution on an FPGA than on a GPU or ASIC, especially if you are a software engineer. But this is an area that is getting a lot of attention now, and a number of companies such, as Mitrionics, are working to ease this task. Mitrionics offers a processor and development environment that turns FPGAs into useful accelerators without requiring electronic design expertise.
 
FPGAs can be added to a server in a variety of ways: most commonly, into a PCI Express slot or a processor socket. By substituting an FPGA module for a processor, you can improve application performance while consuming less power.

HP is working with a number of FPGA vendors to ensure that customers can get the right solution for their problem. For example, HP is working with XtremeData, Inc. (XDI) for in-socket modules for CPU sockets, Nallatech for PCI Express modules, and Celoxica for HTX slot modules.

Question: What applications are best suited for accelerators?

Lupton: There are a couple of characteristics of applications that generally accelerate well. The application’s compute kernel needs to account for a significant part of the application’s total run-time. A 10x improvement on 10-20 percent of the application run-time will likely not be worth the effort of porting to the accelerator. The computation should be performing many calculations using a relatively small amount of data. If the computation touches lots of data, getting data to and from the accelerator will be a bottleneck and you won’t get an advantage from the accelerator’s performance. And, of course, you need to have a problem solution that can be parallelized, since accelerators rely on parallelism for their performance.

Question: Where is acceleration working?

Lupton: The use of accelerators is in various stages ranging from investigation to commercial use. Overall, they are in the early stages of adoption with a number of end-user products coming to market and accelerated systems being put into production.

Financial services organizations are using accelerators in option pricing, risk modeling, and other computationally intensive functions where time is critically important. Biosciences are using accelerators for genetic sequencing, computational chemistry, molecular dynamics, and drug discovery. Government agencies world-wide have been using accelerators for searching and encryption. Additionally, the oil and gas industry is using accelerators for seismic data analysis and processing using reverse time migration for imaging subsurface geological structures in oil exploration as they seek to locate new energy reserves. Medical equipment manufacturers are looking to accelerators for medical imaging modalities such as Computerized Axial Tomography (CAT) scans, Magnetic Resonance Imaging (MRI) and ultrasound diagnostics. The electronic design automation industry has also started to use accelerators and technical tools, such as MATLAB for numerical computations and graphics, and LabView, which uses a graphical programming language to create programs in block diagram form. Lastly, video transcoding times can be greatly reduced via acceleration.

Question: Where are the biggest problems with accelerators today?

Lupton: Because there are so many options and so little commonality in how one develops for different accelerators, thorough investigation is needed before a company commits to using an accelerator. An investigation needs to include a port of the computation kernel to the target accelerator, a task that can range from a month or two to over a year, depending on the learning curve for the technology, the complexity of the problem, and the difficulty of the parallelizing and tuning effort.

Another issue is that the technology is changing rapidly. Factors influencing your choice and even the set of vendors will evolve even while an investigation is in progress. Some of the risks can be reduced by understanding recent successes in porting similar problems, and learning the roadmap of the accelerator vendor and related software products.

But one doesn’t always have to tackle the problem this way. Accelerators are being offered by third-party vendors who incorporate accelerators into devices and hardware/software packages targeting a wide range of problems. These “appliances” can be deployed with much less risk and much more quickly than rolling your own solution. Other companies offer development services for a variety of accelerators so you can outsource the work.

While there are challenges, if you can use accelerators to speed your time to solution while reducing or at least holding to your current power and space limitations, it will help your bottom line and your carbon footprint. If you don’t keep on top of what is happening in the accelerator space, you risk your competition getting a jump on you.

Question: What is HP doing to enable solutions with accelerators?

Lupton: HP established the Accelerator Program based on open standards and accelerator industry partnerships. The goal of the program is to ensure that third-party accelerators will work with HP BladeSystem and rack-mount ProLiant servers and to provide services and support to customers as they adopt accelerator technologies. Our Accelerator team provides recommendations to customers on choosing the accelerator technology that makes the most sense for their applications, while being mindful of power, cooling and space requirements.

“Accelerators can offer substantial speed boosts to applications, but not without investments in reprogramming,” says Kent Koeninger, Product and Technology Marketing Manager. “HP’s Accelerator Program offers expert advice, testing and benchmarks on how to use accelerators, which applications can offer the best payoffs and what techniques are proving useful in this fast-emerging field.”

Question: In the future, how might accelerators fit into Cloud computing?

Koeninger: We are experimenting with accelerators for dramatically faster database access using lower power and fewer servers. We also see promise from accelerators that may improve web transaction rates on multi-core servers. XML searches and encryption are also strong application candidates.

Question: Where can folks get more information on HP’s Accelerator program?

Koeninger: www.hp.com/go/accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft, Nvidia Launch Cloud HPC

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an Infiniband network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the compa Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Governm Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This