At the Nexus of Grid, Cloud and HPC

By Dennis Barker

October 17, 2008

What’s the big difference between cloud computing and grid computing? The goal of cloud computing is to put system administrators out of work.

That’s one way of looking at it, at least. Steve Armentrout, CEO of Parabon Computation, says that was the perspective tossed out by a couple of Google and IBM reps at a panel discussion in which he recently participated. Armentrout suggests a less Dickensian way of looking at it: cloud computing is about “providing a datacenter that is fully automated.” (More on cloud versus grid later.)

Armentrout sees cloud and grid as complementary in some ways — bipartisan, you might say — but he is an unapologetic grid partisan — especially when it comes to his company’s collection of solutions. “We have no intention of changing our grid stripes,” he says. “What Parabon provides is grid software as a service. We enable individuals with grid applications to scale them across a large infrastructure without having to go out and buy hardware. They can just buy capacity as it’s needed. It’s a pay-as-you-go model.”

Basically, Parabon’s Frontier Grid Services offering is a high-performance computing utility. If you need a few thousand nodes to run a financial risk model or some other long and winding analysis, Parabon will hook you up to the resources you need. “We broker computation,” Armentrout says. Like its customers, the company doesn’t own datacenters. What it has is contracts with universities and institutions with big server farms and HPC clusters to aggregate their unused capacity. “All that compute power we use to provide computation on demand,” explains Armentrout.

There’s a lot of computational capability sitting around doing nothing, Armentrout says. “You often hear the estimate that standard servers are typically running at anywhere from 5 to 20 percent capacity. Just think of 80 percent capacity going to waste. Even in a virtualized environment, seldom do you see capacity usage at over 50 percent. All that idle capacity allows us to deploy across a university datacenter, for example, and execute large-scale jobs in the background. Frontier is our technology that lets us capture that unused capacity and make it available as a grid service.”

Parabon’s technology can be used, as just described, across worldwide “public” resources like campus networks — that’s the Parabon Computation Grid — but can also be applied to a company’s own network as the Frontier Enterprise Grid.
 
Parabon built its platform around the Frontier Grid Server, which provides grid services and shared resources to users and developers, whether using the Internet-based Parabon Computation Grid or an in-house Frontier Enterprise grid. The Frontier Grid Server manages execution of jobs across hundreds or thousands of compute nodes. “It can scale up to arbitrarily large grids,” Armentrout says. “Tens of thousands of machines.” Frontier always reserves excess capacity to handle unexpected scale-out demands, he says.

The Frontier Compute Engine is the agnostic agent application that runs on each grid node to actually do the work. It executes tasks only when the resource, the virtual machine in many cases, is not handling a primary task. “Frontier runs as a low-priority process,” Armentrout says, “so if running in a virtualized datacenter — a cloud, you could say — the Compute Engine backs off if a request comes in from the cloud application. It takes precedence. But when resources are not busy, we can fully saturate the datacenter during that unused period of time.”

For example, Parabon might have an arrangement with a research facility in Australia to use its cluster when the scientists are home at night. That could be prime work time for scientists on the other side of the globe. That’s when Frontier could saturate compute nodes to calculate solutions more quickly.

Parabon just released a browser-based interface called the Dashboard that provides an intuitive front-end to the Frontier Grid Platform. “It lets you easily monitor a job, kill a job, assign resources, plus some back-office and accounting functions like looking up how much you’re paying for use,” Armentrout says.

Parabon’s pricing structure is better explained by the company, but the basic idea is that customers pay for units of computational power using a formula that involves kilo-cap hours.

The company provides an API and suite of tools to simplify adapting applications to take advantage of Frontier grid capabilities. And there’s a collection of Frontier-ready programs for applications, including data mining and biological modeling. “It’s kind of like Apple’s App Store but for distributed applications,” Armentrout analogizes. 

Parabon has been around since 2000, when it introduced “the first commercial grid,” Armentrout says. Customers include not just scientific researchers, but also financial analysts, commercial enterprises with high-end analytical demands, bioinformatics, traditional HPC users and government agencies. “Our customers are doing modeling and simulation with very large models, immense data sets,” he explains. “We enable them to run not just one complex scenario but 10,000 scenarios. With Frontier you can explore an entire space of possibilities at once instead of running one simulation, then another, then another.”

Grid vs. Cloud: Parabon-Style

“In terms of grid vs. cloud, there’s lots of confusion around those two terms,” Armentrout says. “But, honestly, the fact that cloud has so much hype surrounding it now makes it easier for us to clarify to customers the benefits of grid computing. Grid, I think, is becoming clearer in people’s minds, while cloud is still, if I might say it, a ‘cloudy’ term.”

There are certainly commonalities, he says: computational utility, virtualized use of computing resources, eliminating the need for dedicated resources and dramatically improved price/performance. “But cloud computing is more about auto-provisioning virtual machines,” explains Armentrout. “It’s about software that lets you go out into a cloud infrastructure, a virtualized datacenter, and say give me one or two VMs and get them in an automated and orderly way. It’s about a datacenter that is completely automated. Sure, customers can scale up and down — that’s one of the benefits of the model — but they typically don’t scale in large-scale numbers. That’s the nature of most Web applications, which is typically what runs in the cloud. In that environment, you still have a lot of capacity that’s available.” 

On the other hand, he believes that grid computing is all about massive parallelization and running large-scale jobs on unused capacity rather than dedicated capacity. The goal is to accelerate large jobs from days to minutes and hours to seconds, and grid computing can enable computations that “just aren’t possible,” he says.

“The folks we’re talking to understand they need grid-scale compute capacity, and that’s not something they’ll get from a pure cloud approach,” Armentrout says. “We routinely run jobs on several thousand machines. It’s that mass parallelization that you just wouldn’t run in the cloud. You want a job done in 5 minutes, not days. Our grid service reaches out to thousands and thousands of boxes and returns an answer in minutes.”

“We’ve got a high-performance solution that works for our customers. We can take advantage of a cloud infrastructure, but we don’t need to chase the cloud phenomenon.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This