At the Nexus of Grid, Cloud and HPC

By Dennis Barker

October 17, 2008

What’s the big difference between cloud computing and grid computing? The goal of cloud computing is to put system administrators out of work.

That’s one way of looking at it, at least. Steve Armentrout, CEO of Parabon Computation, says that was the perspective tossed out by a couple of Google and IBM reps at a panel discussion in which he recently participated. Armentrout suggests a less Dickensian way of looking at it: cloud computing is about “providing a datacenter that is fully automated.” (More on cloud versus grid later.)

Armentrout sees cloud and grid as complementary in some ways — bipartisan, you might say — but he is an unapologetic grid partisan — especially when it comes to his company’s collection of solutions. “We have no intention of changing our grid stripes,” he says. “What Parabon provides is grid software as a service. We enable individuals with grid applications to scale them across a large infrastructure without having to go out and buy hardware. They can just buy capacity as it’s needed. It’s a pay-as-you-go model.”

Basically, Parabon’s Frontier Grid Services offering is a high-performance computing utility. If you need a few thousand nodes to run a financial risk model or some other long and winding analysis, Parabon will hook you up to the resources you need. “We broker computation,” Armentrout says. Like its customers, the company doesn’t own datacenters. What it has is contracts with universities and institutions with big server farms and HPC clusters to aggregate their unused capacity. “All that compute power we use to provide computation on demand,” explains Armentrout.

There’s a lot of computational capability sitting around doing nothing, Armentrout says. “You often hear the estimate that standard servers are typically running at anywhere from 5 to 20 percent capacity. Just think of 80 percent capacity going to waste. Even in a virtualized environment, seldom do you see capacity usage at over 50 percent. All that idle capacity allows us to deploy across a university datacenter, for example, and execute large-scale jobs in the background. Frontier is our technology that lets us capture that unused capacity and make it available as a grid service.”

Parabon’s technology can be used, as just described, across worldwide “public” resources like campus networks — that’s the Parabon Computation Grid — but can also be applied to a company’s own network as the Frontier Enterprise Grid.
Parabon built its platform around the Frontier Grid Server, which provides grid services and shared resources to users and developers, whether using the Internet-based Parabon Computation Grid or an in-house Frontier Enterprise grid. The Frontier Grid Server manages execution of jobs across hundreds or thousands of compute nodes. “It can scale up to arbitrarily large grids,” Armentrout says. “Tens of thousands of machines.” Frontier always reserves excess capacity to handle unexpected scale-out demands, he says.

The Frontier Compute Engine is the agnostic agent application that runs on each grid node to actually do the work. It executes tasks only when the resource, the virtual machine in many cases, is not handling a primary task. “Frontier runs as a low-priority process,” Armentrout says, “so if running in a virtualized datacenter — a cloud, you could say — the Compute Engine backs off if a request comes in from the cloud application. It takes precedence. But when resources are not busy, we can fully saturate the datacenter during that unused period of time.”

For example, Parabon might have an arrangement with a research facility in Australia to use its cluster when the scientists are home at night. That could be prime work time for scientists on the other side of the globe. That’s when Frontier could saturate compute nodes to calculate solutions more quickly.

Parabon just released a browser-based interface called the Dashboard that provides an intuitive front-end to the Frontier Grid Platform. “It lets you easily monitor a job, kill a job, assign resources, plus some back-office and accounting functions like looking up how much you’re paying for use,” Armentrout says.

Parabon’s pricing structure is better explained by the company, but the basic idea is that customers pay for units of computational power using a formula that involves kilo-cap hours.

The company provides an API and suite of tools to simplify adapting applications to take advantage of Frontier grid capabilities. And there’s a collection of Frontier-ready programs for applications, including data mining and biological modeling. “It’s kind of like Apple’s App Store but for distributed applications,” Armentrout analogizes. 

Parabon has been around since 2000, when it introduced “the first commercial grid,” Armentrout says. Customers include not just scientific researchers, but also financial analysts, commercial enterprises with high-end analytical demands, bioinformatics, traditional HPC users and government agencies. “Our customers are doing modeling and simulation with very large models, immense data sets,” he explains. “We enable them to run not just one complex scenario but 10,000 scenarios. With Frontier you can explore an entire space of possibilities at once instead of running one simulation, then another, then another.”

Grid vs. Cloud: Parabon-Style

“In terms of grid vs. cloud, there’s lots of confusion around those two terms,” Armentrout says. “But, honestly, the fact that cloud has so much hype surrounding it now makes it easier for us to clarify to customers the benefits of grid computing. Grid, I think, is becoming clearer in people’s minds, while cloud is still, if I might say it, a ‘cloudy’ term.”

There are certainly commonalities, he says: computational utility, virtualized use of computing resources, eliminating the need for dedicated resources and dramatically improved price/performance. “But cloud computing is more about auto-provisioning virtual machines,” explains Armentrout. “It’s about software that lets you go out into a cloud infrastructure, a virtualized datacenter, and say give me one or two VMs and get them in an automated and orderly way. It’s about a datacenter that is completely automated. Sure, customers can scale up and down — that’s one of the benefits of the model — but they typically don’t scale in large-scale numbers. That’s the nature of most Web applications, which is typically what runs in the cloud. In that environment, you still have a lot of capacity that’s available.” 

On the other hand, he believes that grid computing is all about massive parallelization and running large-scale jobs on unused capacity rather than dedicated capacity. The goal is to accelerate large jobs from days to minutes and hours to seconds, and grid computing can enable computations that “just aren’t possible,” he says.

“The folks we’re talking to understand they need grid-scale compute capacity, and that’s not something they’ll get from a pure cloud approach,” Armentrout says. “We routinely run jobs on several thousand machines. It’s that mass parallelization that you just wouldn’t run in the cloud. You want a job done in 5 minutes, not days. Our grid service reaches out to thousands and thousands of boxes and returns an answer in minutes.”

“We’ve got a high-performance solution that works for our customers. We can take advantage of a cloud infrastructure, but we don’t need to chase the cloud phenomenon.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This