At the Nexus of Grid, Cloud and HPC

By Dennis Barker

October 17, 2008

What’s the big difference between cloud computing and grid computing? The goal of cloud computing is to put system administrators out of work.

That’s one way of looking at it, at least. Steve Armentrout, CEO of Parabon Computation, says that was the perspective tossed out by a couple of Google and IBM reps at a panel discussion in which he recently participated. Armentrout suggests a less Dickensian way of looking at it: cloud computing is about “providing a datacenter that is fully automated.” (More on cloud versus grid later.)

Armentrout sees cloud and grid as complementary in some ways — bipartisan, you might say — but he is an unapologetic grid partisan — especially when it comes to his company’s collection of solutions. “We have no intention of changing our grid stripes,” he says. “What Parabon provides is grid software as a service. We enable individuals with grid applications to scale them across a large infrastructure without having to go out and buy hardware. They can just buy capacity as it’s needed. It’s a pay-as-you-go model.”

Basically, Parabon’s Frontier Grid Services offering is a high-performance computing utility. If you need a few thousand nodes to run a financial risk model or some other long and winding analysis, Parabon will hook you up to the resources you need. “We broker computation,” Armentrout says. Like its customers, the company doesn’t own datacenters. What it has is contracts with universities and institutions with big server farms and HPC clusters to aggregate their unused capacity. “All that compute power we use to provide computation on demand,” explains Armentrout.

There’s a lot of computational capability sitting around doing nothing, Armentrout says. “You often hear the estimate that standard servers are typically running at anywhere from 5 to 20 percent capacity. Just think of 80 percent capacity going to waste. Even in a virtualized environment, seldom do you see capacity usage at over 50 percent. All that idle capacity allows us to deploy across a university datacenter, for example, and execute large-scale jobs in the background. Frontier is our technology that lets us capture that unused capacity and make it available as a grid service.”

Parabon’s technology can be used, as just described, across worldwide “public” resources like campus networks — that’s the Parabon Computation Grid — but can also be applied to a company’s own network as the Frontier Enterprise Grid.
 
Parabon built its platform around the Frontier Grid Server, which provides grid services and shared resources to users and developers, whether using the Internet-based Parabon Computation Grid or an in-house Frontier Enterprise grid. The Frontier Grid Server manages execution of jobs across hundreds or thousands of compute nodes. “It can scale up to arbitrarily large grids,” Armentrout says. “Tens of thousands of machines.” Frontier always reserves excess capacity to handle unexpected scale-out demands, he says.

The Frontier Compute Engine is the agnostic agent application that runs on each grid node to actually do the work. It executes tasks only when the resource, the virtual machine in many cases, is not handling a primary task. “Frontier runs as a low-priority process,” Armentrout says, “so if running in a virtualized datacenter — a cloud, you could say — the Compute Engine backs off if a request comes in from the cloud application. It takes precedence. But when resources are not busy, we can fully saturate the datacenter during that unused period of time.”

For example, Parabon might have an arrangement with a research facility in Australia to use its cluster when the scientists are home at night. That could be prime work time for scientists on the other side of the globe. That’s when Frontier could saturate compute nodes to calculate solutions more quickly.

Parabon just released a browser-based interface called the Dashboard that provides an intuitive front-end to the Frontier Grid Platform. “It lets you easily monitor a job, kill a job, assign resources, plus some back-office and accounting functions like looking up how much you’re paying for use,” Armentrout says.

Parabon’s pricing structure is better explained by the company, but the basic idea is that customers pay for units of computational power using a formula that involves kilo-cap hours.

The company provides an API and suite of tools to simplify adapting applications to take advantage of Frontier grid capabilities. And there’s a collection of Frontier-ready programs for applications, including data mining and biological modeling. “It’s kind of like Apple’s App Store but for distributed applications,” Armentrout analogizes. 

Parabon has been around since 2000, when it introduced “the first commercial grid,” Armentrout says. Customers include not just scientific researchers, but also financial analysts, commercial enterprises with high-end analytical demands, bioinformatics, traditional HPC users and government agencies. “Our customers are doing modeling and simulation with very large models, immense data sets,” he explains. “We enable them to run not just one complex scenario but 10,000 scenarios. With Frontier you can explore an entire space of possibilities at once instead of running one simulation, then another, then another.”

Grid vs. Cloud: Parabon-Style

“In terms of grid vs. cloud, there’s lots of confusion around those two terms,” Armentrout says. “But, honestly, the fact that cloud has so much hype surrounding it now makes it easier for us to clarify to customers the benefits of grid computing. Grid, I think, is becoming clearer in people’s minds, while cloud is still, if I might say it, a ‘cloudy’ term.”

There are certainly commonalities, he says: computational utility, virtualized use of computing resources, eliminating the need for dedicated resources and dramatically improved price/performance. “But cloud computing is more about auto-provisioning virtual machines,” explains Armentrout. “It’s about software that lets you go out into a cloud infrastructure, a virtualized datacenter, and say give me one or two VMs and get them in an automated and orderly way. It’s about a datacenter that is completely automated. Sure, customers can scale up and down — that’s one of the benefits of the model — but they typically don’t scale in large-scale numbers. That’s the nature of most Web applications, which is typically what runs in the cloud. In that environment, you still have a lot of capacity that’s available.” 

On the other hand, he believes that grid computing is all about massive parallelization and running large-scale jobs on unused capacity rather than dedicated capacity. The goal is to accelerate large jobs from days to minutes and hours to seconds, and grid computing can enable computations that “just aren’t possible,” he says.

“The folks we’re talking to understand they need grid-scale compute capacity, and that’s not something they’ll get from a pure cloud approach,” Armentrout says. “We routinely run jobs on several thousand machines. It’s that mass parallelization that you just wouldn’t run in the cloud. You want a job done in 5 minutes, not days. Our grid service reaches out to thousands and thousands of boxes and returns an answer in minutes.”

“We’ve got a high-performance solution that works for our customers. We can take advantage of a cloud infrastructure, but we don’t need to chase the cloud phenomenon.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This