At the Nexus of Grid, Cloud and HPC

By Dennis Barker

October 17, 2008

What’s the big difference between cloud computing and grid computing? The goal of cloud computing is to put system administrators out of work.

That’s one way of looking at it, at least. Steve Armentrout, CEO of Parabon Computation, says that was the perspective tossed out by a couple of Google and IBM reps at a panel discussion in which he recently participated. Armentrout suggests a less Dickensian way of looking at it: cloud computing is about “providing a datacenter that is fully automated.” (More on cloud versus grid later.)

Armentrout sees cloud and grid as complementary in some ways — bipartisan, you might say — but he is an unapologetic grid partisan — especially when it comes to his company’s collection of solutions. “We have no intention of changing our grid stripes,” he says. “What Parabon provides is grid software as a service. We enable individuals with grid applications to scale them across a large infrastructure without having to go out and buy hardware. They can just buy capacity as it’s needed. It’s a pay-as-you-go model.”

Basically, Parabon’s Frontier Grid Services offering is a high-performance computing utility. If you need a few thousand nodes to run a financial risk model or some other long and winding analysis, Parabon will hook you up to the resources you need. “We broker computation,” Armentrout says. Like its customers, the company doesn’t own datacenters. What it has is contracts with universities and institutions with big server farms and HPC clusters to aggregate their unused capacity. “All that compute power we use to provide computation on demand,” explains Armentrout.

There’s a lot of computational capability sitting around doing nothing, Armentrout says. “You often hear the estimate that standard servers are typically running at anywhere from 5 to 20 percent capacity. Just think of 80 percent capacity going to waste. Even in a virtualized environment, seldom do you see capacity usage at over 50 percent. All that idle capacity allows us to deploy across a university datacenter, for example, and execute large-scale jobs in the background. Frontier is our technology that lets us capture that unused capacity and make it available as a grid service.”

Parabon’s technology can be used, as just described, across worldwide “public” resources like campus networks — that’s the Parabon Computation Grid — but can also be applied to a company’s own network as the Frontier Enterprise Grid.
 
Parabon built its platform around the Frontier Grid Server, which provides grid services and shared resources to users and developers, whether using the Internet-based Parabon Computation Grid or an in-house Frontier Enterprise grid. The Frontier Grid Server manages execution of jobs across hundreds or thousands of compute nodes. “It can scale up to arbitrarily large grids,” Armentrout says. “Tens of thousands of machines.” Frontier always reserves excess capacity to handle unexpected scale-out demands, he says.

The Frontier Compute Engine is the agnostic agent application that runs on each grid node to actually do the work. It executes tasks only when the resource, the virtual machine in many cases, is not handling a primary task. “Frontier runs as a low-priority process,” Armentrout says, “so if running in a virtualized datacenter — a cloud, you could say — the Compute Engine backs off if a request comes in from the cloud application. It takes precedence. But when resources are not busy, we can fully saturate the datacenter during that unused period of time.”

For example, Parabon might have an arrangement with a research facility in Australia to use its cluster when the scientists are home at night. That could be prime work time for scientists on the other side of the globe. That’s when Frontier could saturate compute nodes to calculate solutions more quickly.

Parabon just released a browser-based interface called the Dashboard that provides an intuitive front-end to the Frontier Grid Platform. “It lets you easily monitor a job, kill a job, assign resources, plus some back-office and accounting functions like looking up how much you’re paying for use,” Armentrout says.

Parabon’s pricing structure is better explained by the company, but the basic idea is that customers pay for units of computational power using a formula that involves kilo-cap hours.

The company provides an API and suite of tools to simplify adapting applications to take advantage of Frontier grid capabilities. And there’s a collection of Frontier-ready programs for applications, including data mining and biological modeling. “It’s kind of like Apple’s App Store but for distributed applications,” Armentrout analogizes. 

Parabon has been around since 2000, when it introduced “the first commercial grid,” Armentrout says. Customers include not just scientific researchers, but also financial analysts, commercial enterprises with high-end analytical demands, bioinformatics, traditional HPC users and government agencies. “Our customers are doing modeling and simulation with very large models, immense data sets,” he explains. “We enable them to run not just one complex scenario but 10,000 scenarios. With Frontier you can explore an entire space of possibilities at once instead of running one simulation, then another, then another.”

Grid vs. Cloud: Parabon-Style

“In terms of grid vs. cloud, there’s lots of confusion around those two terms,” Armentrout says. “But, honestly, the fact that cloud has so much hype surrounding it now makes it easier for us to clarify to customers the benefits of grid computing. Grid, I think, is becoming clearer in people’s minds, while cloud is still, if I might say it, a ‘cloudy’ term.”

There are certainly commonalities, he says: computational utility, virtualized use of computing resources, eliminating the need for dedicated resources and dramatically improved price/performance. “But cloud computing is more about auto-provisioning virtual machines,” explains Armentrout. “It’s about software that lets you go out into a cloud infrastructure, a virtualized datacenter, and say give me one or two VMs and get them in an automated and orderly way. It’s about a datacenter that is completely automated. Sure, customers can scale up and down — that’s one of the benefits of the model — but they typically don’t scale in large-scale numbers. That’s the nature of most Web applications, which is typically what runs in the cloud. In that environment, you still have a lot of capacity that’s available.” 

On the other hand, he believes that grid computing is all about massive parallelization and running large-scale jobs on unused capacity rather than dedicated capacity. The goal is to accelerate large jobs from days to minutes and hours to seconds, and grid computing can enable computations that “just aren’t possible,” he says.

“The folks we’re talking to understand they need grid-scale compute capacity, and that’s not something they’ll get from a pure cloud approach,” Armentrout says. “We routinely run jobs on several thousand machines. It’s that mass parallelization that you just wouldn’t run in the cloud. You want a job done in 5 minutes, not days. Our grid service reaches out to thousands and thousands of boxes and returns an answer in minutes.”

“We’ve got a high-performance solution that works for our customers. We can take advantage of a cloud infrastructure, but we don’t need to chase the cloud phenomenon.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This