The MathWorks Gets Serious About Distributed Computing

By Michael Feldman

October 21, 2008

Scientific computing is quickly moving to parallel platforms and most software vendors are following suit. The MathWorks, which started parallelizing MATLAB and the company’s other numerical and scientific computing products four years ago, is now setting its sights on cluster and grid computing — and even computing in the cloud. With this in mind, MATLAB has recently been enhanced to work more intimately with distributed computing environments.

The enhancements consist of refinements to The MathWorks’ Parallel Computing Toolbox and MATLAB Distributed Computing Server that allow MATLAB sessions to run transparently over cluster and grid platforms. In addition, new MATLAB compiler and builder upgrades now let developers incorporate MATLAB libraries or functions into standalone executables, which can then be run on clusters or grids, themselves.

The latest MATLAB upgrade includes built-in support for the European EGEE grid (Enabling Grids for E-sciencE). This was accomplished by integrating the Parallel Computing Toolbox and MATLAB Distributed Computing Server with EGEE’s middleware, gLite. This enables MATLAB parallel applications to utilize the European grid infrastructure while running from the desktop. Since EGEE contains more than 70,000 CPUs spread across the continent, that represents almost unlimited computing power for an application.

It’s also now possible for MATLAB users to tap Amazon’s Elastic Compute Cloud. This requires a little more fiddling than hooking up to EGEE, since a system admin person will be required to deal with EC2 licensing and network issues. The MathWorks has written a technical paper on how to configure its products for EC2 and has a consulting service available to help you get started. And while EC2 is not specifically geared for scientific workloads, it might provide a useful platform for loosely-coupled, but highly-scalable technical computing applications.

Making MATLAB cluster- and grid-friendly solves the problems of two related groups of customers: desktop technical computing users and traditional HPC users. The desktop contingent — engineers, analysts, scientific algorithm developers — are already heavily invested in MATLAB products, but their challenges are growing larger. “The problem they have today is that their applications exceed the capacity of their desktop machines,” explains Silvina Grad-Freilich, manager of parallel computing and application deployment marketing at The MathWorks. In many cases they want to move up to HPC clusters, but would rather not leave their familiar MATLAB environment behind.

Traditional supercomputing users, on the other hand, are looking for ease of programming, but don’t want to give up the portability and scalability of the traditional MPI/C and Fortran model. “They want a simple technical computing environment so that they can focus on their science and not on the parallel programming aspects of the problem,” says Grad-Freilich.

Whether on a local cluster or a distributed grid, the underlying model is essentially the same: Use MATLAB parallel constructs and libraries to distribute workloads off the desktop. The way this is accomplished is via the MATLAB Distributed Computing Server, which manages remote MATLAB workers in a compute cluster. A remote worker is essentially the same as a desktop MATLAB process, but it operates remotely and runs its own process in parallel. In truth, multiple workers can also be run locally on the desktop if the user wants to take advantage of multiple CPU cores and doesn’t require the level of parallelism of a distributed solution.

To the MATLAB user, the execution of the workers is usually transparent. Their presence and location is managed underneath the covers and is determined by the hardware configuration visible to MATLAB. The configuration is selected by the user before beginning a MATLAB session if something other than the default setup is required. For example, if a user wants to override his default configuration — say his desktop — he/she could select a local cluster, a remote cluster, or even Amazon’s EC2. When the user initiates the session, any parallelism encountered in the software will try to take advantage of the hardware resources available.

There are multiple ways to inject parallelism into a MATLAB program depending on the nature of the problem and how hard the developers want to work. If they don’t want to make any extra effort, developers can just rely on the latest versions of the MATLAB libraries (the Optimization Toolbox and Genetic Algorithm and Direct Search Toolbox), which come pre-parallelized. No application code changes are needed. If developers are willing to make some minimal changes, they can employ MATLAB parallel constructs in their own application code to achieve additional parallelization. The parallel-for loop (parfor) can be used to execute a loop in parallel, while the new spmd (single program, multiple data) construct allows a developer to distribute data, such as large matrices or arrays, and their associated operations across a distributed system.

Application code and the pre-built MATLAB toolbox libraries are portable across desktops, clusters and grids, since the low-level parallelization is performed by the runtime system based on the configuration resources it sees. Even for a single-core CPU environment, MATLAB is smart enough to fall back to serial execution when it encounters parallel code. Developers can insist on parallelization by specifying a number of workers to employ for a particular instance of a parfor or spmd construct. In this case, if the workers are not available (not enough resources or not enough licenses), an error is thrown back to the application, which then must deal with it.

Another way The MathWorks is expanding MATLAB’s horizons is by leveraging this new distributed functionality for standalone applications. Using the MATLAB compiler and builder, developers can construct MATLAB executables or shared libraries, which can be hooked into C, Fortran, or even Java applications. The resulting programs can take advantage of MATLAB’s parallelization abilities while maintaining portability across different platforms.

For example, a quantitative analyst (quant) could develop a MATLAB-based financial model on his or her desktop and then incorporate that model into a portfolio manager’s high-level spreadsheet application. The idea is an old one in software engineering: build a repository of portable software libraries to be used for a wide range of applications. In this case, since the libraries can utilize MATLAB’s distributed computing capabilities, it becomes a path to parallelization.

There are no royalty fees associated with deployed MATLAB code. But the end user has to buy enough MATLAB worker licenses to support the level of parallelization required by the application. A worker license is checked out from the license manager when a worker starts up and is returned to the pool when the worker is shut down. The hardware that the application is being executed upon is only indirectly related to the number of licenses purchased. It’s up to the user how to map workers to hardware.

Loren Dean, director in the MATLAB development organization, says their general recommendation is to map one worker per socket. And although MATLAB supports multithreading to some extent, one computational thread per worker is probably optimal in most cases, especially if the application is memory bound. While in many cases, that means cores are going to be idle, the economics of distributed computing may allow for such inefficiencies. Says Dean: “When you look at the cloud and grid resources that are becoming available, for the most part, that’s all about multi-processing. So when you really want to have once piece of code that’s going to scale naturally, multi-processing just seems more logical.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire