The MathWorks Gets Serious About Distributed Computing

By Michael Feldman

October 21, 2008

Scientific computing is quickly moving to parallel platforms and most software vendors are following suit. The MathWorks, which started parallelizing MATLAB and the company’s other numerical and scientific computing products four years ago, is now setting its sights on cluster and grid computing — and even computing in the cloud. With this in mind, MATLAB has recently been enhanced to work more intimately with distributed computing environments.

The enhancements consist of refinements to The MathWorks’ Parallel Computing Toolbox and MATLAB Distributed Computing Server that allow MATLAB sessions to run transparently over cluster and grid platforms. In addition, new MATLAB compiler and builder upgrades now let developers incorporate MATLAB libraries or functions into standalone executables, which can then be run on clusters or grids, themselves.

The latest MATLAB upgrade includes built-in support for the European EGEE grid (Enabling Grids for E-sciencE). This was accomplished by integrating the Parallel Computing Toolbox and MATLAB Distributed Computing Server with EGEE’s middleware, gLite. This enables MATLAB parallel applications to utilize the European grid infrastructure while running from the desktop. Since EGEE contains more than 70,000 CPUs spread across the continent, that represents almost unlimited computing power for an application.

It’s also now possible for MATLAB users to tap Amazon’s Elastic Compute Cloud. This requires a little more fiddling than hooking up to EGEE, since a system admin person will be required to deal with EC2 licensing and network issues. The MathWorks has written a technical paper on how to configure its products for EC2 and has a consulting service available to help you get started. And while EC2 is not specifically geared for scientific workloads, it might provide a useful platform for loosely-coupled, but highly-scalable technical computing applications.

Making MATLAB cluster- and grid-friendly solves the problems of two related groups of customers: desktop technical computing users and traditional HPC users. The desktop contingent — engineers, analysts, scientific algorithm developers — are already heavily invested in MATLAB products, but their challenges are growing larger. “The problem they have today is that their applications exceed the capacity of their desktop machines,” explains Silvina Grad-Freilich, manager of parallel computing and application deployment marketing at The MathWorks. In many cases they want to move up to HPC clusters, but would rather not leave their familiar MATLAB environment behind.

Traditional supercomputing users, on the other hand, are looking for ease of programming, but don’t want to give up the portability and scalability of the traditional MPI/C and Fortran model. “They want a simple technical computing environment so that they can focus on their science and not on the parallel programming aspects of the problem,” says Grad-Freilich.

Whether on a local cluster or a distributed grid, the underlying model is essentially the same: Use MATLAB parallel constructs and libraries to distribute workloads off the desktop. The way this is accomplished is via the MATLAB Distributed Computing Server, which manages remote MATLAB workers in a compute cluster. A remote worker is essentially the same as a desktop MATLAB process, but it operates remotely and runs its own process in parallel. In truth, multiple workers can also be run locally on the desktop if the user wants to take advantage of multiple CPU cores and doesn’t require the level of parallelism of a distributed solution.

To the MATLAB user, the execution of the workers is usually transparent. Their presence and location is managed underneath the covers and is determined by the hardware configuration visible to MATLAB. The configuration is selected by the user before beginning a MATLAB session if something other than the default setup is required. For example, if a user wants to override his default configuration — say his desktop — he/she could select a local cluster, a remote cluster, or even Amazon’s EC2. When the user initiates the session, any parallelism encountered in the software will try to take advantage of the hardware resources available.

There are multiple ways to inject parallelism into a MATLAB program depending on the nature of the problem and how hard the developers want to work. If they don’t want to make any extra effort, developers can just rely on the latest versions of the MATLAB libraries (the Optimization Toolbox and Genetic Algorithm and Direct Search Toolbox), which come pre-parallelized. No application code changes are needed. If developers are willing to make some minimal changes, they can employ MATLAB parallel constructs in their own application code to achieve additional parallelization. The parallel-for loop (parfor) can be used to execute a loop in parallel, while the new spmd (single program, multiple data) construct allows a developer to distribute data, such as large matrices or arrays, and their associated operations across a distributed system.

Application code and the pre-built MATLAB toolbox libraries are portable across desktops, clusters and grids, since the low-level parallelization is performed by the runtime system based on the configuration resources it sees. Even for a single-core CPU environment, MATLAB is smart enough to fall back to serial execution when it encounters parallel code. Developers can insist on parallelization by specifying a number of workers to employ for a particular instance of a parfor or spmd construct. In this case, if the workers are not available (not enough resources or not enough licenses), an error is thrown back to the application, which then must deal with it.

Another way The MathWorks is expanding MATLAB’s horizons is by leveraging this new distributed functionality for standalone applications. Using the MATLAB compiler and builder, developers can construct MATLAB executables or shared libraries, which can be hooked into C, Fortran, or even Java applications. The resulting programs can take advantage of MATLAB’s parallelization abilities while maintaining portability across different platforms.

For example, a quantitative analyst (quant) could develop a MATLAB-based financial model on his or her desktop and then incorporate that model into a portfolio manager’s high-level spreadsheet application. The idea is an old one in software engineering: build a repository of portable software libraries to be used for a wide range of applications. In this case, since the libraries can utilize MATLAB’s distributed computing capabilities, it becomes a path to parallelization.

There are no royalty fees associated with deployed MATLAB code. But the end user has to buy enough MATLAB worker licenses to support the level of parallelization required by the application. A worker license is checked out from the license manager when a worker starts up and is returned to the pool when the worker is shut down. The hardware that the application is being executed upon is only indirectly related to the number of licenses purchased. It’s up to the user how to map workers to hardware.

Loren Dean, director in the MATLAB development organization, says their general recommendation is to map one worker per socket. And although MATLAB supports multithreading to some extent, one computational thread per worker is probably optimal in most cases, especially if the application is memory bound. While in many cases, that means cores are going to be idle, the economics of distributed computing may allow for such inefficiencies. Says Dean: “When you look at the cloud and grid resources that are becoming available, for the most part, that’s all about multi-processing. So when you really want to have once piece of code that’s going to scale naturally, multi-processing just seems more logical.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This