The MathWorks Gets Serious About Distributed Computing

By Michael Feldman

October 21, 2008

Scientific computing is quickly moving to parallel platforms and most software vendors are following suit. The MathWorks, which started parallelizing MATLAB and the company’s other numerical and scientific computing products four years ago, is now setting its sights on cluster and grid computing — and even computing in the cloud. With this in mind, MATLAB has recently been enhanced to work more intimately with distributed computing environments.

The enhancements consist of refinements to The MathWorks’ Parallel Computing Toolbox and MATLAB Distributed Computing Server that allow MATLAB sessions to run transparently over cluster and grid platforms. In addition, new MATLAB compiler and builder upgrades now let developers incorporate MATLAB libraries or functions into standalone executables, which can then be run on clusters or grids, themselves.

The latest MATLAB upgrade includes built-in support for the European EGEE grid (Enabling Grids for E-sciencE). This was accomplished by integrating the Parallel Computing Toolbox and MATLAB Distributed Computing Server with EGEE’s middleware, gLite. This enables MATLAB parallel applications to utilize the European grid infrastructure while running from the desktop. Since EGEE contains more than 70,000 CPUs spread across the continent, that represents almost unlimited computing power for an application.

It’s also now possible for MATLAB users to tap Amazon’s Elastic Compute Cloud. This requires a little more fiddling than hooking up to EGEE, since a system admin person will be required to deal with EC2 licensing and network issues. The MathWorks has written a technical paper on how to configure its products for EC2 and has a consulting service available to help you get started. And while EC2 is not specifically geared for scientific workloads, it might provide a useful platform for loosely-coupled, but highly-scalable technical computing applications.

Making MATLAB cluster- and grid-friendly solves the problems of two related groups of customers: desktop technical computing users and traditional HPC users. The desktop contingent — engineers, analysts, scientific algorithm developers — are already heavily invested in MATLAB products, but their challenges are growing larger. “The problem they have today is that their applications exceed the capacity of their desktop machines,” explains Silvina Grad-Freilich, manager of parallel computing and application deployment marketing at The MathWorks. In many cases they want to move up to HPC clusters, but would rather not leave their familiar MATLAB environment behind.

Traditional supercomputing users, on the other hand, are looking for ease of programming, but don’t want to give up the portability and scalability of the traditional MPI/C and Fortran model. “They want a simple technical computing environment so that they can focus on their science and not on the parallel programming aspects of the problem,” says Grad-Freilich.

Whether on a local cluster or a distributed grid, the underlying model is essentially the same: Use MATLAB parallel constructs and libraries to distribute workloads off the desktop. The way this is accomplished is via the MATLAB Distributed Computing Server, which manages remote MATLAB workers in a compute cluster. A remote worker is essentially the same as a desktop MATLAB process, but it operates remotely and runs its own process in parallel. In truth, multiple workers can also be run locally on the desktop if the user wants to take advantage of multiple CPU cores and doesn’t require the level of parallelism of a distributed solution.

To the MATLAB user, the execution of the workers is usually transparent. Their presence and location is managed underneath the covers and is determined by the hardware configuration visible to MATLAB. The configuration is selected by the user before beginning a MATLAB session if something other than the default setup is required. For example, if a user wants to override his default configuration — say his desktop — he/she could select a local cluster, a remote cluster, or even Amazon’s EC2. When the user initiates the session, any parallelism encountered in the software will try to take advantage of the hardware resources available.

There are multiple ways to inject parallelism into a MATLAB program depending on the nature of the problem and how hard the developers want to work. If they don’t want to make any extra effort, developers can just rely on the latest versions of the MATLAB libraries (the Optimization Toolbox and Genetic Algorithm and Direct Search Toolbox), which come pre-parallelized. No application code changes are needed. If developers are willing to make some minimal changes, they can employ MATLAB parallel constructs in their own application code to achieve additional parallelization. The parallel-for loop (parfor) can be used to execute a loop in parallel, while the new spmd (single program, multiple data) construct allows a developer to distribute data, such as large matrices or arrays, and their associated operations across a distributed system.

Application code and the pre-built MATLAB toolbox libraries are portable across desktops, clusters and grids, since the low-level parallelization is performed by the runtime system based on the configuration resources it sees. Even for a single-core CPU environment, MATLAB is smart enough to fall back to serial execution when it encounters parallel code. Developers can insist on parallelization by specifying a number of workers to employ for a particular instance of a parfor or spmd construct. In this case, if the workers are not available (not enough resources or not enough licenses), an error is thrown back to the application, which then must deal with it.

Another way The MathWorks is expanding MATLAB’s horizons is by leveraging this new distributed functionality for standalone applications. Using the MATLAB compiler and builder, developers can construct MATLAB executables or shared libraries, which can be hooked into C, Fortran, or even Java applications. The resulting programs can take advantage of MATLAB’s parallelization abilities while maintaining portability across different platforms.

For example, a quantitative analyst (quant) could develop a MATLAB-based financial model on his or her desktop and then incorporate that model into a portfolio manager’s high-level spreadsheet application. The idea is an old one in software engineering: build a repository of portable software libraries to be used for a wide range of applications. In this case, since the libraries can utilize MATLAB’s distributed computing capabilities, it becomes a path to parallelization.

There are no royalty fees associated with deployed MATLAB code. But the end user has to buy enough MATLAB worker licenses to support the level of parallelization required by the application. A worker license is checked out from the license manager when a worker starts up and is returned to the pool when the worker is shut down. The hardware that the application is being executed upon is only indirectly related to the number of licenses purchased. It’s up to the user how to map workers to hardware.

Loren Dean, director in the MATLAB development organization, says their general recommendation is to map one worker per socket. And although MATLAB supports multithreading to some extent, one computational thread per worker is probably optimal in most cases, especially if the application is memory bound. While in many cases, that means cores are going to be idle, the economics of distributed computing may allow for such inefficiencies. Says Dean: “When you look at the cloud and grid resources that are becoming available, for the most part, that’s all about multi-processing. So when you really want to have once piece of code that’s going to scale naturally, multi-processing just seems more logical.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire