The Future of Climate Research: A Q&A with ORNL’s James Hack

By Leo Williams (NCCS Science Writer)

November 7, 2008

When James Hack came to Oak Ridge National Laboratory (ORNL) at the end of 2007, he was given two hats: one as the director of ORNL’s National Center for Computational Sciences (NCCS) and the other as leader of ORNL’s laboratory-wide climate science effort.

At the helm of the NCCS, he guides the most powerful open science supercomputing center in the world. The NCCS hosts leading research in climate dynamics and the development of alternative energy sources, as well as a wide range of computational sciences — from basic explorations in nuclear physics and quantum dynamics to astrophysics explorations of supernovas and dark matter.

As leader of ORNL’s Climate Change Initiative, he is in charge of pulling together scientists and engineers from across ORNL to advance the state of the science. Hack is uniquely qualified to take on this role. Before coming to ORNL, he headed the Climate Modeling Section at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., and served as deputy director of the center’s Climate and Global Dynamics Division.

We asked Hack about the future of climate science and the climate initiative at ORNL.

HPCwire: How will climate research evolve in the coming years?

Hack: Climate science has largely been curiosity-driven research. But the growing acceptance that humans affect the evolution of atmospheric composition, land use, and so on, all of which in turn affect the climate state, provides a little more focus and a little more urgency to taking a harder look at what the modeling tools are capable of providing in the form of specific consequences for society.

That to me is the transformation. There’s a growing need for improvements in simulation fidelity and predictive skill. The potential consumers of that kind of simulation information will be leaning hard on the climate change community to provide answers to their questions. That’s the change that’s going to differentiate the next 10 years of climate change science from the previous 30.

For example, we know from observations over the last 50 years that the snowpack in the Pacific Northwest has been decreasing. At the same time, temperature in the same region has been increasing. If that trend continues, it raises lots of concerns for water resource managers who have counted on storing their water in the form of snow until a certain time of year when it starts melting.

If precipitation never comes down as snow or if it starts melting sooner than you need it, you may not able to meet your water demands. It’s an example of an infrastructure that’s vulnerable to specific changes in a region’s climate state. Many of the solutions to this problem may also bring with them other environmental consequences.

HPCwire: So what can you do to help users of climate data?

Hack: We need to know if we can tie down with some certainty how climate will change on the scales that matter to people. It’s one thing to tell somebody that the planet’s going to warm by 2 degrees centigrade between now and 2100, but it doesn’t really help anybody who’s in the business of planning or managing societal infrastructures on regional scales. We know from the models that it won’t be a homogeneous change. The high latitudes are going to feel maybe 8-degree increases in temperature, and the lower latitudes are going to feel considerably less. And quantifying changes in the hydrological cycle on regional scales may be even more important than temperature changes.

We think we might currently have sufficient skill to project climate change on regional scales about the size of the Southeast, Pacific Northwest, Rocky Mountain West, or Farm Belt. As a community we need to demonstrate that the potential is really there and try and quantify what the uncertainties are. We haven’t done a very good job with this challenge so far. But I think the scientific community is starting to realize that we have an opportunity to take a step back and ask, “What can we do on regional scales and timescales that we think are predictable?”

For example, there’s a belief that climate statistics have some predictive skill on decadal timescales. The driver for that is going to reside in the ocean, the motion scales of which have a very, very long time frame. There is a belief in the scientific community that the ocean’s behavior can be predicted several decades into the future.

If you can do the ocean part of the problem, given the fact that 70 percent of the planet is covered with water, you have a very strong constraint on the other parts of the system. Then the question is, “Will the other component models follow?” The atmosphere doesn’t have any deterministic predictive skill beyond a few weeks. So you’re dealing with statistics that are forced by components of the climate system that have much slower variability than the atmosphere. Even the terrestrial components of the climate system, particularly land use changes, come into play on longer timescales.

HPCwire: Are we ready to make predictions about the ocean?

Hack: As is the case with the atmosphere, we’re still building knowledge about the ocean component. A difficult challenge will be initializing the ocean state for the purpose of prediction. I believe there’s a tremendous opportunity for people who want to pursue the ocean initialization problem.

To deliver decadal prediction we will need to treat the climate problem as an initial value problem and not a hypothetical boundary-value problem. Besides getting the statistical behavior right, you need the phase of low frequency variability to be correct as well. For example, predicting when an El Niño will occur or when a La Niña will occur. If we can accurately predict this type of ocean behavior, there is evidence that other features of the climate state can be accurately reproduced. That’s a matter of correctly initializing the model and accurately incorporating all the necessary physics in the respective component models.

HPCwire: How do you demonstrate that you’re getting it right?

Hack: We can come up with numerical experiments to assess whether the global model can produce useful information on the timescales and space scales of most importance to resource managers and planners. They may want to know where the temperature’s headed locally, how the hydrological cycle is likely to behave, or how extreme events will change. Do the models provide us with the kind of predictive skill we need, and if not, how can they be improved?

When you start windowing down to very small space scales, at what point does the uncertainty or natural noise in the system begin to swamp the signal that you’re trying to find? We can illuminate that with retrospective simulations because we have lots of data for an instrumented period that’s multidecadal. It’s not all the same quality, but it quantifies what’s happened in the climate record in a much more complete way, say, than going back to paleoclimate times or even going back a few centuries. Retrospective simulations over the latter part of the 20th century can help to quantitatively establish what the models are capable of doing or not capable of doing on relatively fine spatial scales.

HPCwire: What is the role of computing in this effort?

Hack: Computing is a big part of the effort. To fully evaluate the skill in our modeling tools, we need very large computer systems — petascale machines. Assimilating data streams that will be used in the evaluation of modeling frameworks requires very large computer and data systems.

Clearly, a significant computational piece is modeling — building models that have all the components they need to accurately predict the evolution of the earth’s climate system. That’s computationally very intensive. Incorporating the complexities of the carbon cycle in these models, using the expertise of ORNL’s Environmental Sciences Division, contributes to the computational demands. And then mining the data to deal with questions of human impacts and climate extremes, that again is very computationally intensive.

So computation does in fact tie the whole effort together. It cuts across all the various climate science applications. There are certain areas of science where you need a virtual laboratory to explore the what-if experiments, and that’s what computation provides for the climate problem.

Global modeling is something that has been funded under programs like SciDAC [Scientific Discovery through Advanced Computing] and other DOE programs in partnership with other national labs like NCAR. For example, there’s an almost 20-year history of ORNL partnering with NCAR on the development of global models and implementing global models efficiently on high-performance computing systems. We are also in the process of building strong new relationships with our NOAA [National Oceanic and Atmospheric Administration] and NASA [National Aeronautics and Space Administration] climate modeling colleagues, looking at high-resolution global modeling, quantifying predictive skill on climate timescales, identifying climate extremes in global simulations, and exploring climate impacts in the context of integrated assessment modeling. All this builds on strong preexisting partnerships with many other DOE laboratories.

HPCwire: You are leading a new multidisciplinary effort at ORNL focused on climate science. What is the reasoning behind this effort?

Hack: ORNL has identified climate change as an opportunity that could very effectively exploit existing competencies, particularly high-performance computing and ORNL’s long history in contributing to fundamental knowledge about carbon science and in global modeling. The lab also has expertise in evaluating impacts on societal infrastructure. Take rising sea levels. Most of the folks living around the world live close to coastlines, so if the sea level rises even a meter, it has a huge societal impact. The people who are displaced must go somewhere else, maybe moving into areas that were previously used for agriculture. That displaces agricultural activities. ORNL has a very strong GIS [geographic information systems] group that can contribute to quantification of these scenarios.

So we’re looking at how we can bring these various competencies together to provide a capability that’s unique among the laboratories. The end result for us is to provide stakeholders, resource managers, and others with information they need to deal with the consequences of climate change.

HPCwire: What will ORNL’s initiative look like?

Hack: It’s a cross-cutting initiative. We’re trying to engage people from across the laboratory to stretch the kind of work they’re doing in such a way that it requires partnerships with other ORNL folks. So far, many of the more promising proposals include collaborations that cut across the Biological and Environmental Sciences Directorate and CCSD [Computing and Computational Sciences Directorate].

As the initiative matures, I hope we’ll begin to incorporate more people in the energy arena, another strong part of the ORNL scientific program. These things could include ways to link climate change and the hard questions we’re facing in energy production, like bioenergy and renewable energy technologies, as well as energy consumption. Dealing directly with climate mitigation questions, such as strategies for the sequestration of carbon, is an opportunity for this initiative.

From an energy production point of view, planning has a multidecadal timeframe. Anyone planning investments in the energy infrastructure needs to understand what role the environment might play. That’s the goal — to be able to say 20 years from now, “Here’s what we anticipate will happen with regard to environmental change on a regional scale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight


[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour


Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This