The Future of Climate Research: A Q&A with ORNL’s James Hack

By Leo Williams (NCCS Science Writer)

November 7, 2008

When James Hack came to Oak Ridge National Laboratory (ORNL) at the end of 2007, he was given two hats: one as the director of ORNL’s National Center for Computational Sciences (NCCS) and the other as leader of ORNL’s laboratory-wide climate science effort.

At the helm of the NCCS, he guides the most powerful open science supercomputing center in the world. The NCCS hosts leading research in climate dynamics and the development of alternative energy sources, as well as a wide range of computational sciences — from basic explorations in nuclear physics and quantum dynamics to astrophysics explorations of supernovas and dark matter.

As leader of ORNL’s Climate Change Initiative, he is in charge of pulling together scientists and engineers from across ORNL to advance the state of the science. Hack is uniquely qualified to take on this role. Before coming to ORNL, he headed the Climate Modeling Section at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., and served as deputy director of the center’s Climate and Global Dynamics Division.

We asked Hack about the future of climate science and the climate initiative at ORNL.

HPCwire: How will climate research evolve in the coming years?

Hack: Climate science has largely been curiosity-driven research. But the growing acceptance that humans affect the evolution of atmospheric composition, land use, and so on, all of which in turn affect the climate state, provides a little more focus and a little more urgency to taking a harder look at what the modeling tools are capable of providing in the form of specific consequences for society.

That to me is the transformation. There’s a growing need for improvements in simulation fidelity and predictive skill. The potential consumers of that kind of simulation information will be leaning hard on the climate change community to provide answers to their questions. That’s the change that’s going to differentiate the next 10 years of climate change science from the previous 30.

For example, we know from observations over the last 50 years that the snowpack in the Pacific Northwest has been decreasing. At the same time, temperature in the same region has been increasing. If that trend continues, it raises lots of concerns for water resource managers who have counted on storing their water in the form of snow until a certain time of year when it starts melting.

If precipitation never comes down as snow or if it starts melting sooner than you need it, you may not able to meet your water demands. It’s an example of an infrastructure that’s vulnerable to specific changes in a region’s climate state. Many of the solutions to this problem may also bring with them other environmental consequences.

HPCwire: So what can you do to help users of climate data?

Hack: We need to know if we can tie down with some certainty how climate will change on the scales that matter to people. It’s one thing to tell somebody that the planet’s going to warm by 2 degrees centigrade between now and 2100, but it doesn’t really help anybody who’s in the business of planning or managing societal infrastructures on regional scales. We know from the models that it won’t be a homogeneous change. The high latitudes are going to feel maybe 8-degree increases in temperature, and the lower latitudes are going to feel considerably less. And quantifying changes in the hydrological cycle on regional scales may be even more important than temperature changes.

We think we might currently have sufficient skill to project climate change on regional scales about the size of the Southeast, Pacific Northwest, Rocky Mountain West, or Farm Belt. As a community we need to demonstrate that the potential is really there and try and quantify what the uncertainties are. We haven’t done a very good job with this challenge so far. But I think the scientific community is starting to realize that we have an opportunity to take a step back and ask, “What can we do on regional scales and timescales that we think are predictable?”

For example, there’s a belief that climate statistics have some predictive skill on decadal timescales. The driver for that is going to reside in the ocean, the motion scales of which have a very, very long time frame. There is a belief in the scientific community that the ocean’s behavior can be predicted several decades into the future.

If you can do the ocean part of the problem, given the fact that 70 percent of the planet is covered with water, you have a very strong constraint on the other parts of the system. Then the question is, “Will the other component models follow?” The atmosphere doesn’t have any deterministic predictive skill beyond a few weeks. So you’re dealing with statistics that are forced by components of the climate system that have much slower variability than the atmosphere. Even the terrestrial components of the climate system, particularly land use changes, come into play on longer timescales.

HPCwire: Are we ready to make predictions about the ocean?

Hack: As is the case with the atmosphere, we’re still building knowledge about the ocean component. A difficult challenge will be initializing the ocean state for the purpose of prediction. I believe there’s a tremendous opportunity for people who want to pursue the ocean initialization problem.

To deliver decadal prediction we will need to treat the climate problem as an initial value problem and not a hypothetical boundary-value problem. Besides getting the statistical behavior right, you need the phase of low frequency variability to be correct as well. For example, predicting when an El Niño will occur or when a La Niña will occur. If we can accurately predict this type of ocean behavior, there is evidence that other features of the climate state can be accurately reproduced. That’s a matter of correctly initializing the model and accurately incorporating all the necessary physics in the respective component models.

HPCwire: How do you demonstrate that you’re getting it right?

Hack: We can come up with numerical experiments to assess whether the global model can produce useful information on the timescales and space scales of most importance to resource managers and planners. They may want to know where the temperature’s headed locally, how the hydrological cycle is likely to behave, or how extreme events will change. Do the models provide us with the kind of predictive skill we need, and if not, how can they be improved?

When you start windowing down to very small space scales, at what point does the uncertainty or natural noise in the system begin to swamp the signal that you’re trying to find? We can illuminate that with retrospective simulations because we have lots of data for an instrumented period that’s multidecadal. It’s not all the same quality, but it quantifies what’s happened in the climate record in a much more complete way, say, than going back to paleoclimate times or even going back a few centuries. Retrospective simulations over the latter part of the 20th century can help to quantitatively establish what the models are capable of doing or not capable of doing on relatively fine spatial scales.

HPCwire: What is the role of computing in this effort?

Hack: Computing is a big part of the effort. To fully evaluate the skill in our modeling tools, we need very large computer systems — petascale machines. Assimilating data streams that will be used in the evaluation of modeling frameworks requires very large computer and data systems.

Clearly, a significant computational piece is modeling — building models that have all the components they need to accurately predict the evolution of the earth’s climate system. That’s computationally very intensive. Incorporating the complexities of the carbon cycle in these models, using the expertise of ORNL’s Environmental Sciences Division, contributes to the computational demands. And then mining the data to deal with questions of human impacts and climate extremes, that again is very computationally intensive.

So computation does in fact tie the whole effort together. It cuts across all the various climate science applications. There are certain areas of science where you need a virtual laboratory to explore the what-if experiments, and that’s what computation provides for the climate problem.

Global modeling is something that has been funded under programs like SciDAC [Scientific Discovery through Advanced Computing] and other DOE programs in partnership with other national labs like NCAR. For example, there’s an almost 20-year history of ORNL partnering with NCAR on the development of global models and implementing global models efficiently on high-performance computing systems. We are also in the process of building strong new relationships with our NOAA [National Oceanic and Atmospheric Administration] and NASA [National Aeronautics and Space Administration] climate modeling colleagues, looking at high-resolution global modeling, quantifying predictive skill on climate timescales, identifying climate extremes in global simulations, and exploring climate impacts in the context of integrated assessment modeling. All this builds on strong preexisting partnerships with many other DOE laboratories.

HPCwire: You are leading a new multidisciplinary effort at ORNL focused on climate science. What is the reasoning behind this effort?

Hack: ORNL has identified climate change as an opportunity that could very effectively exploit existing competencies, particularly high-performance computing and ORNL’s long history in contributing to fundamental knowledge about carbon science and in global modeling. The lab also has expertise in evaluating impacts on societal infrastructure. Take rising sea levels. Most of the folks living around the world live close to coastlines, so if the sea level rises even a meter, it has a huge societal impact. The people who are displaced must go somewhere else, maybe moving into areas that were previously used for agriculture. That displaces agricultural activities. ORNL has a very strong GIS [geographic information systems] group that can contribute to quantification of these scenarios.

So we’re looking at how we can bring these various competencies together to provide a capability that’s unique among the laboratories. The end result for us is to provide stakeholders, resource managers, and others with information they need to deal with the consequences of climate change.

HPCwire: What will ORNL’s initiative look like?

Hack: It’s a cross-cutting initiative. We’re trying to engage people from across the laboratory to stretch the kind of work they’re doing in such a way that it requires partnerships with other ORNL folks. So far, many of the more promising proposals include collaborations that cut across the Biological and Environmental Sciences Directorate and CCSD [Computing and Computational Sciences Directorate].

As the initiative matures, I hope we’ll begin to incorporate more people in the energy arena, another strong part of the ORNL scientific program. These things could include ways to link climate change and the hard questions we’re facing in energy production, like bioenergy and renewable energy technologies, as well as energy consumption. Dealing directly with climate mitigation questions, such as strategies for the sequestration of carbon, is an opportunity for this initiative.

From an energy production point of view, planning has a multidecadal timeframe. Anyone planning investments in the energy infrastructure needs to understand what role the environment might play. That’s the goal — to be able to say 20 years from now, “Here’s what we anticipate will happen with regard to environmental change on a regional scale.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire