Startup Provides a New Twist on Reconfigurable Supercomputing

By Michael Feldman

November 17, 2008

The HPC community has been dabbling with Field Programmable Gate Arrays (FPGAs) for several years now, but the technology has never reached escape velocity. The attraction of reconfigurable computing has kept the supercomputing crowd dreaming, but clunky and non-standard programming environments, lack of FPGA chip real estate for 64-bit floating point operations, and I/O bandwidth limitations have inhibited their use in mainstream HPC. The common refrain of “FPGAs are the future of supercomputing and always will be” seemed destined to be a permanent joke.

Convey Hybrid CoreBut at SC08 this week, startup Convey Computer Corp. launched a new server and software stack that aims to tame FPGAs and deliver reconfigurable computing to everyday HPC users. In a nutshell, the company has developed a “hybrid core” server, the HC-1, which wraps FPGAs into a reconfigurable coprocessor that runs alongside a standard multicore x86 CPU. The CPU and coprocessor can be programmed with standard C/C++ and Fortran. Essentially, you can take legacy code, run it through the Convey compiler, and out pops an executable that runs an order of magnitude faster on a Convey box than it would on an x86 system.

Convey is brainchild of Steve Wallach, co-founder and CTO of Convex Computer, a company that developed vector supercomputers back in the 80s and 90s. (In case you were wondering, yes, Convey = Convex+1.) Since programming vector processors was a pain for users, Convex developed automatic vectorizing compilers to enable standard codes to take advantage of their machines. In 1995, the company was bought out by HP and eventually Wallach hopped on the consulting circuit, selling his computing expertise to the government and IT venture capitalists.

Steve Wallach

His idea for hybrid core computing was born out of conversations with his contemporaries at Intel and Xilinx. Wallach convinced them that he would be able to take their commodity processors and create an innovative and commercially-viable platform for HPC users. Both Intel Capital and Xilinx became investors in Convey, along with CenterPoint Ventures, InterWest Partners and Rho Ventures. The initial funding amounted to $15.1 million.

Wallach, now the chief scientist at Convey, tapped some of the Convex alumni and assembled a 28-person team to get the new company off the ground. The Convey engineers resurrected the Convex auto-vectorization model with a new twist: using FPGAs as reconfigurable acceleration engines. But the idea of insulating the developer from the hardware is the same. “Our view is that you should be able to program in standard Fortran, C and C++,” says Wallach. So no extra language keywords, extensions, or special APIs are required to extract the extra performance from the FPGA-based coprocessor. According to Wallach, “you should put the burden on the compiler to do all the heavy lifting.”

This is a departure from most other HPC accelerator-based systems, where proprietary language or runtime API extensions are needed to tap the non-CPU hardware. Environments like CUDA (for GPUs) or ImpulseC (for FPGAs) rely on extended forms of C, which means legacy code must be ported before it can be accelerated. It also means newly developed code is tied to a particular architecture or must rely on a configuration management system to maintain separate source trees. All of that translates into lost human productivity.

On the hardware side, Convey’s principle architectural innovation is tightly coupling the x86 CPU with the reconfigurable coprocessor. To accomplish this, the Convey engineers designed a server with a CPU and multi-FPGA coprocessor that share the same view of virtual memory. The x86 is used mostly for scalar logic and the coprocessor is used for vector acceleration, while taking advantage of the FPGA’s ability to be tuned to workload-specific instruction streams. Since the coprocessor implements virtual memory and cache coherence, no data has to be shuffled back and forth between the CPU and externally connected FPGAs.

Convey Hybrid Core ComputingThe way the coprocessor is reconfigured for different applications is by loading the FPGAs with a “personality,” which describe an instruction set that has been optimized for a specific workload. For example, there could be different personalities for bioinformatics, CFD, financial analytics, and seismic processing. If you had a financial analytic calculation where you wanted to see the results with different interest rates or with random numbers plugged in, your application would require double-precision function units and instructions to facilitate such operations as random number generation and exponentiation, square roots and logarithms. Other applications like seismic processing require single-precision, complex floating point instructions.

At compile-time, the developer selects a command-line switch to specify the appropriate personality for the application source. Based on the switch, the compiler extracts the parallelism from the source code by generating the personality’s extended instructions intermixed with x86 instructions, as appropriate. Prior to execution, the OS configures the FPGAs by loading the personality image corresponding to the extended instruction set.

At any one time, the coprocessor executes a single personality. In most cases, this will be sufficient for an entire application. But the FPGAs can be dynamically reconfigured during execution if an application embodies multiple types of workloads. A personality switch takes on the order of hundreds of milliseconds. The idea is that unless your application has a umm… “personality disorder,” switching occurs relatively infrequently during execution — basically during program startup or application phase changes.

There is also the ability for developers to build “procedural” personalities, which implement entire routines that are invoked like procedures or functions. To do this, a programmer will need to employ the Personality Development Kit (insert your own geek joke here) supplied by Convey.

The base hardware is a 2U rack-mountable server containing two sockets — one for an Intel CPU and one for the coprocessor. The coprocessor contains a host interface, three or four FPGA (Xilinx Virtex-5) chips, and a memory controller. The host interface encapsulates the communication with the CPU, instruction fetching and decoding, plus a common set of scalar op-codes for the coprocessor. The first version of the system will employ Intel’s front-side bus to talk to the coprocessor. But with Nehalem processors just around the corner, Convey already has plans in place for a QuickPath Interconnect-based system.

The memory controller manages a high bandwidth memory subsystem, which is incorporated into the CPU’s virtual memory space. It uses 16 DDR2 memory channels to deliver an aggregate bandwidth of 80 GB/sec. That’s a lot faster than what is currently available on an Intel Harpertown system and is even faster than what will be available on next year’s Nehalem chips. At these speeds, the controller is able to transfer individual 64-bit words (as opposed to just entire cache lines), which is how a vector processor would like to be fed.

Innovation doesn’t come cheap. An HC-1 server retail for around $32,000. But the pitch is that since an average HPC app can be accelerated 10x on this platform, each HC-1 is equivalent to 10 vanilla x86 boxes. If true that would translate to significant savings for system acquisition costs, as well as power and cooling.

UCSD is an early customer, using the HC-1 to accelerate a proteomics application, called InsPecT. Scientists there expect to achieve a 16x speedup with the new system. Pavel Pevzner, director of UCSD’s Center for Computational Mass Spectrometry, says a single rack of HC-1 servers can replace eight racks of conventional servers at the center.

How well the Convey platform performs over a range of HPC codes remains to be seen. And introducing a new company with a new architecture certainly has some risks, especially in this economy. But Wallach thinks he’s got a winner and seems undeterred about launching into a headwind. “The way you make money and be successful is to be a contrarian,” he says.

Steve Wallach will be honored at SC08 with IEEE’s Seymour Cray Award. For more about Wallach, see our in-depth interview with him in today’s issue.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This