Startup Provides a New Twist on Reconfigurable Supercomputing

By Michael Feldman

November 17, 2008

The HPC community has been dabbling with Field Programmable Gate Arrays (FPGAs) for several years now, but the technology has never reached escape velocity. The attraction of reconfigurable computing has kept the supercomputing crowd dreaming, but clunky and non-standard programming environments, lack of FPGA chip real estate for 64-bit floating point operations, and I/O bandwidth limitations have inhibited their use in mainstream HPC. The common refrain of “FPGAs are the future of supercomputing and always will be” seemed destined to be a permanent joke.

Convey Hybrid CoreBut at SC08 this week, startup Convey Computer Corp. launched a new server and software stack that aims to tame FPGAs and deliver reconfigurable computing to everyday HPC users. In a nutshell, the company has developed a “hybrid core” server, the HC-1, which wraps FPGAs into a reconfigurable coprocessor that runs alongside a standard multicore x86 CPU. The CPU and coprocessor can be programmed with standard C/C++ and Fortran. Essentially, you can take legacy code, run it through the Convey compiler, and out pops an executable that runs an order of magnitude faster on a Convey box than it would on an x86 system.

Convey is brainchild of Steve Wallach, co-founder and CTO of Convex Computer, a company that developed vector supercomputers back in the 80s and 90s. (In case you were wondering, yes, Convey = Convex+1.) Since programming vector processors was a pain for users, Convex developed automatic vectorizing compilers to enable standard codes to take advantage of their machines. In 1995, the company was bought out by HP and eventually Wallach hopped on the consulting circuit, selling his computing expertise to the government and IT venture capitalists.

Steve Wallach

His idea for hybrid core computing was born out of conversations with his contemporaries at Intel and Xilinx. Wallach convinced them that he would be able to take their commodity processors and create an innovative and commercially-viable platform for HPC users. Both Intel Capital and Xilinx became investors in Convey, along with CenterPoint Ventures, InterWest Partners and Rho Ventures. The initial funding amounted to $15.1 million.

Wallach, now the chief scientist at Convey, tapped some of the Convex alumni and assembled a 28-person team to get the new company off the ground. The Convey engineers resurrected the Convex auto-vectorization model with a new twist: using FPGAs as reconfigurable acceleration engines. But the idea of insulating the developer from the hardware is the same. “Our view is that you should be able to program in standard Fortran, C and C++,” says Wallach. So no extra language keywords, extensions, or special APIs are required to extract the extra performance from the FPGA-based coprocessor. According to Wallach, “you should put the burden on the compiler to do all the heavy lifting.”

This is a departure from most other HPC accelerator-based systems, where proprietary language or runtime API extensions are needed to tap the non-CPU hardware. Environments like CUDA (for GPUs) or ImpulseC (for FPGAs) rely on extended forms of C, which means legacy code must be ported before it can be accelerated. It also means newly developed code is tied to a particular architecture or must rely on a configuration management system to maintain separate source trees. All of that translates into lost human productivity.

On the hardware side, Convey’s principle architectural innovation is tightly coupling the x86 CPU with the reconfigurable coprocessor. To accomplish this, the Convey engineers designed a server with a CPU and multi-FPGA coprocessor that share the same view of virtual memory. The x86 is used mostly for scalar logic and the coprocessor is used for vector acceleration, while taking advantage of the FPGA’s ability to be tuned to workload-specific instruction streams. Since the coprocessor implements virtual memory and cache coherence, no data has to be shuffled back and forth between the CPU and externally connected FPGAs.

Convey Hybrid Core ComputingThe way the coprocessor is reconfigured for different applications is by loading the FPGAs with a “personality,” which describe an instruction set that has been optimized for a specific workload. For example, there could be different personalities for bioinformatics, CFD, financial analytics, and seismic processing. If you had a financial analytic calculation where you wanted to see the results with different interest rates or with random numbers plugged in, your application would require double-precision function units and instructions to facilitate such operations as random number generation and exponentiation, square roots and logarithms. Other applications like seismic processing require single-precision, complex floating point instructions.

At compile-time, the developer selects a command-line switch to specify the appropriate personality for the application source. Based on the switch, the compiler extracts the parallelism from the source code by generating the personality’s extended instructions intermixed with x86 instructions, as appropriate. Prior to execution, the OS configures the FPGAs by loading the personality image corresponding to the extended instruction set.

At any one time, the coprocessor executes a single personality. In most cases, this will be sufficient for an entire application. But the FPGAs can be dynamically reconfigured during execution if an application embodies multiple types of workloads. A personality switch takes on the order of hundreds of milliseconds. The idea is that unless your application has a umm… “personality disorder,” switching occurs relatively infrequently during execution — basically during program startup or application phase changes.

There is also the ability for developers to build “procedural” personalities, which implement entire routines that are invoked like procedures or functions. To do this, a programmer will need to employ the Personality Development Kit (insert your own geek joke here) supplied by Convey.

The base hardware is a 2U rack-mountable server containing two sockets — one for an Intel CPU and one for the coprocessor. The coprocessor contains a host interface, three or four FPGA (Xilinx Virtex-5) chips, and a memory controller. The host interface encapsulates the communication with the CPU, instruction fetching and decoding, plus a common set of scalar op-codes for the coprocessor. The first version of the system will employ Intel’s front-side bus to talk to the coprocessor. But with Nehalem processors just around the corner, Convey already has plans in place for a QuickPath Interconnect-based system.

The memory controller manages a high bandwidth memory subsystem, which is incorporated into the CPU’s virtual memory space. It uses 16 DDR2 memory channels to deliver an aggregate bandwidth of 80 GB/sec. That’s a lot faster than what is currently available on an Intel Harpertown system and is even faster than what will be available on next year’s Nehalem chips. At these speeds, the controller is able to transfer individual 64-bit words (as opposed to just entire cache lines), which is how a vector processor would like to be fed.

Innovation doesn’t come cheap. An HC-1 server retail for around $32,000. But the pitch is that since an average HPC app can be accelerated 10x on this platform, each HC-1 is equivalent to 10 vanilla x86 boxes. If true that would translate to significant savings for system acquisition costs, as well as power and cooling.

UCSD is an early customer, using the HC-1 to accelerate a proteomics application, called InsPecT. Scientists there expect to achieve a 16x speedup with the new system. Pavel Pevzner, director of UCSD’s Center for Computational Mass Spectrometry, says a single rack of HC-1 servers can replace eight racks of conventional servers at the center.

How well the Convey platform performs over a range of HPC codes remains to be seen. And introducing a new company with a new architecture certainly has some risks, especially in this economy. But Wallach thinks he’s got a winner and seems undeterred about launching into a headwind. “The way you make money and be successful is to be a contrarian,” he says.

Steve Wallach will be honored at SC08 with IEEE’s Seymour Cray Award. For more about Wallach, see our in-depth interview with him in today’s issue.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This