Startup Provides a New Twist on Reconfigurable Supercomputing

By Michael Feldman

November 17, 2008

The HPC community has been dabbling with Field Programmable Gate Arrays (FPGAs) for several years now, but the technology has never reached escape velocity. The attraction of reconfigurable computing has kept the supercomputing crowd dreaming, but clunky and non-standard programming environments, lack of FPGA chip real estate for 64-bit floating point operations, and I/O bandwidth limitations have inhibited their use in mainstream HPC. The common refrain of “FPGAs are the future of supercomputing and always will be” seemed destined to be a permanent joke.

Convey Hybrid CoreBut at SC08 this week, startup Convey Computer Corp. launched a new server and software stack that aims to tame FPGAs and deliver reconfigurable computing to everyday HPC users. In a nutshell, the company has developed a “hybrid core” server, the HC-1, which wraps FPGAs into a reconfigurable coprocessor that runs alongside a standard multicore x86 CPU. The CPU and coprocessor can be programmed with standard C/C++ and Fortran. Essentially, you can take legacy code, run it through the Convey compiler, and out pops an executable that runs an order of magnitude faster on a Convey box than it would on an x86 system.

Convey is brainchild of Steve Wallach, co-founder and CTO of Convex Computer, a company that developed vector supercomputers back in the 80s and 90s. (In case you were wondering, yes, Convey = Convex+1.) Since programming vector processors was a pain for users, Convex developed automatic vectorizing compilers to enable standard codes to take advantage of their machines. In 1995, the company was bought out by HP and eventually Wallach hopped on the consulting circuit, selling his computing expertise to the government and IT venture capitalists.

Steve Wallach

His idea for hybrid core computing was born out of conversations with his contemporaries at Intel and Xilinx. Wallach convinced them that he would be able to take their commodity processors and create an innovative and commercially-viable platform for HPC users. Both Intel Capital and Xilinx became investors in Convey, along with CenterPoint Ventures, InterWest Partners and Rho Ventures. The initial funding amounted to $15.1 million.

Wallach, now the chief scientist at Convey, tapped some of the Convex alumni and assembled a 28-person team to get the new company off the ground. The Convey engineers resurrected the Convex auto-vectorization model with a new twist: using FPGAs as reconfigurable acceleration engines. But the idea of insulating the developer from the hardware is the same. “Our view is that you should be able to program in standard Fortran, C and C++,” says Wallach. So no extra language keywords, extensions, or special APIs are required to extract the extra performance from the FPGA-based coprocessor. According to Wallach, “you should put the burden on the compiler to do all the heavy lifting.”

This is a departure from most other HPC accelerator-based systems, where proprietary language or runtime API extensions are needed to tap the non-CPU hardware. Environments like CUDA (for GPUs) or ImpulseC (for FPGAs) rely on extended forms of C, which means legacy code must be ported before it can be accelerated. It also means newly developed code is tied to a particular architecture or must rely on a configuration management system to maintain separate source trees. All of that translates into lost human productivity.

On the hardware side, Convey’s principle architectural innovation is tightly coupling the x86 CPU with the reconfigurable coprocessor. To accomplish this, the Convey engineers designed a server with a CPU and multi-FPGA coprocessor that share the same view of virtual memory. The x86 is used mostly for scalar logic and the coprocessor is used for vector acceleration, while taking advantage of the FPGA’s ability to be tuned to workload-specific instruction streams. Since the coprocessor implements virtual memory and cache coherence, no data has to be shuffled back and forth between the CPU and externally connected FPGAs.

Convey Hybrid Core ComputingThe way the coprocessor is reconfigured for different applications is by loading the FPGAs with a “personality,” which describe an instruction set that has been optimized for a specific workload. For example, there could be different personalities for bioinformatics, CFD, financial analytics, and seismic processing. If you had a financial analytic calculation where you wanted to see the results with different interest rates or with random numbers plugged in, your application would require double-precision function units and instructions to facilitate such operations as random number generation and exponentiation, square roots and logarithms. Other applications like seismic processing require single-precision, complex floating point instructions.

At compile-time, the developer selects a command-line switch to specify the appropriate personality for the application source. Based on the switch, the compiler extracts the parallelism from the source code by generating the personality’s extended instructions intermixed with x86 instructions, as appropriate. Prior to execution, the OS configures the FPGAs by loading the personality image corresponding to the extended instruction set.

At any one time, the coprocessor executes a single personality. In most cases, this will be sufficient for an entire application. But the FPGAs can be dynamically reconfigured during execution if an application embodies multiple types of workloads. A personality switch takes on the order of hundreds of milliseconds. The idea is that unless your application has a umm… “personality disorder,” switching occurs relatively infrequently during execution — basically during program startup or application phase changes.

There is also the ability for developers to build “procedural” personalities, which implement entire routines that are invoked like procedures or functions. To do this, a programmer will need to employ the Personality Development Kit (insert your own geek joke here) supplied by Convey.

The base hardware is a 2U rack-mountable server containing two sockets — one for an Intel CPU and one for the coprocessor. The coprocessor contains a host interface, three or four FPGA (Xilinx Virtex-5) chips, and a memory controller. The host interface encapsulates the communication with the CPU, instruction fetching and decoding, plus a common set of scalar op-codes for the coprocessor. The first version of the system will employ Intel’s front-side bus to talk to the coprocessor. But with Nehalem processors just around the corner, Convey already has plans in place for a QuickPath Interconnect-based system.

The memory controller manages a high bandwidth memory subsystem, which is incorporated into the CPU’s virtual memory space. It uses 16 DDR2 memory channels to deliver an aggregate bandwidth of 80 GB/sec. That’s a lot faster than what is currently available on an Intel Harpertown system and is even faster than what will be available on next year’s Nehalem chips. At these speeds, the controller is able to transfer individual 64-bit words (as opposed to just entire cache lines), which is how a vector processor would like to be fed.

Innovation doesn’t come cheap. An HC-1 server retail for around $32,000. But the pitch is that since an average HPC app can be accelerated 10x on this platform, each HC-1 is equivalent to 10 vanilla x86 boxes. If true that would translate to significant savings for system acquisition costs, as well as power and cooling.

UCSD is an early customer, using the HC-1 to accelerate a proteomics application, called InsPecT. Scientists there expect to achieve a 16x speedup with the new system. Pavel Pevzner, director of UCSD’s Center for Computational Mass Spectrometry, says a single rack of HC-1 servers can replace eight racks of conventional servers at the center.

How well the Convey platform performs over a range of HPC codes remains to be seen. And introducing a new company with a new architecture certainly has some risks, especially in this economy. But Wallach thinks he’s got a winner and seems undeterred about launching into a headwind. “The way you make money and be successful is to be a contrarian,” he says.

Steve Wallach will be honored at SC08 with IEEE’s Seymour Cray Award. For more about Wallach, see our in-depth interview with him in today’s issue.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This