Straight Shooter: A Conversation with 2008 Seymour Cray Award Winner Steve Wallach

By Michael Feldman

November 17, 2008

Steve Wallach, a supercomputing legend, has participated in all 20 supercomputing shows and will be honored at the 2008 event with IEEE’s Seymour Cray Award for his “contribution to high-performance computing through design of innovative vector and parallel computing systems, notably the Convex mini-supercomputer series, a distinguished industrial career and acts of public service.”

The Seymour Cray Award, established in 1998 by the IEEE Computer Society Board of Governors, is given each year to individuals whose innovative contributions to high-performance computing systems best exemplify the creative spirit demonstrated by the late Seymour Cray. Steve Wallach will accept the award on November 20 at 1:30 p.m. at SC08. In addition he will give a plenary presentation, “Processor Architecture: Past, Present, Future” on Wednesday, November 19 at 1:30 p.m.

Those who know Steve Wallach know he is never short on opinions, especially when it comes to high performance computing. HPCwire talked to Wallach about everything from the future of HPC to his philosophy on building a successful HPC business.

Steve Wallach, Convey Computer Corp.HPCwire: First of all, congratulations on the award. What’s the best thing about winning the Cray award?

Steve Wallach: Everything. This is one of our industry’s greatest honors and I am deeply appreciative. To be associated with Seymour Cray, even in name only, is phenomenal. When I was notified, I was speechless. When the Cray 1 was announced, I read every piece of literature I could find on it. Seymour Cray and his designs had an effect on me, from a technical perspective, more than any other single event.

HPCwire: What’s the single biggest change you’ve seen in high-performance computing in the past 20 years?

Wallach: Perhaps the biggest change is the leveling of the uniprocessor performance. For all practical purposes, with the leveling off of clock frequency and memory bandwidth, the performance of ONE processor core has not changed much. Thus, we have multicore and massive parallelism. In fact, if one calculates the memory bandwidth per core (total memory bandwidth divided by the number of cores) it is DECREASING over time (normalized for peak gflops/core). I was a member of several government studies (National Academy of Engineering and Defense Science Board) that highlighted this leveling-off phenomena.

If we can’t access the data, we can’t operate on the data. This is one reason the industry is looking into ways to create semantically rich instructions. We know we can achieve more compute performance once the data is located within the core’s memory/register infrastructure.

HPCwire: You state in your plenary presentation that the past 40 years has taught us that the “system that is easier to program will always win.” Why is that?

Wallach: It boils down to two issues: cost of ownership and cost of development. At a recent Los Alamos Conference, it was pointed out that the cost of a programmer for one year is MORE than the cost of acquiring a TERAFLOP (peak performance) system. We need to address the software productivity issue. Of course this is one of the main objectives of DARPA’s HPCS (High Productivity Computer Systems) program.

We address both issues with our new servers. For example, the Convey overall system hardware and software architecture is identical to the x86, with coprocessor instructions appearing as extensions to the x86. Thus, programmers benefit from 100 percent productivity and portability.

The Convey coprocessor and the Intel x86 share a common cache-coherent physical and virtual address space. What this means is that the programmer does not need to manage the physical memory on the coprocessor nor explicitly move data back and forth between the x86 main memory and the coprocessor main memory.

Finally, the Convey-engineered, ANSI standard C, C++, and Fortran compiler automatically generates x86 and coprocessor instructions. Only one compiler is used, which is a significant contrast to various forms of attached accelerators that use two or more compilers. Existing applications can be compiled as is, and language subsets and/or non-standard extensions are not required to use the Convey coprocessor.

HPCwire: After all the history with parallel programming, why is HPC application development still so problematic?

Wallach: As Yogi Berra said: “It is déjà vu all over again.” Many of the issues discussed and analyzed today, existed 20 years ago. Many applications still have code that is 20 years old. Many applications still have “serial math” as their underpinning. And before we forget, our universities are really not teaching parallel programming. But now HPC applications are moving into a different application space called Data Intensive Computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. The industry needs to put more time and money into software productivity — and we are doing that. Just last March, for example, Microsoft and Intel announced a joint research initiative focusing on improving programming tools for multicore processing.

HPCwire: What’s happened to innovation in high-performance computing?

Wallach: It’s always there. HPC represents the leading — and sometimes the bleeding edge of computing coupled with a variety of practical applications. Innovation also rules in the area of results gained from HPC. Without supercomputing power, we wouldn’t understand the human genome, travel to Mars, or — as our first customer the University of California, San Diego is experiencing — initiate unrestricted “blind searches” of massive protein databases to look for possible and unanticipated modifications in proteins. Modifications are particularly important for the study of diseases where multiple genes are involved, such as heart disease or cancer.

HPCwire: What is next for high performance computing?

Wallach: I believe there will be two major thrusts. One thrust will be in the software development area. We need new paradigms. At the recent Salishan Conference, this was pointed out over and over again. I expect we begin to have more widespread use of PGAS (Partitioned Global Address Space) languages. These languages are more productive than using MPI. And, with the introduction of Intel’s QPI, coupled with AMD’s HT, I expect PGAS to accelerate.

The other major thrust will be the widespread use of optical interconnects. We need more bisection bandwidth for the next generation MPPs. We also need more bandwidth for chip-to-chip connections. The telecommunications industry uses DWDM (dense wavelength division multiplexing) optics for all its long haul communications. Hopefully, a combination of Moore’s Law and material advances will bring this technology to centimeter-length busses.

HPCwire: What’s your philosophy of the HPC business and how has it changed over the years?

Wallach: It’s all about value for the customer — a philosophy that has stayed constant over the years. How do we make life easier for the customer? As an engineering company driven by engineers for engineers, we understand what makes one product difficult to work with and another one easy and we strive for easy. While our customers will probably buy our servers for the performance gains and price value, we’ll win their trust and enthusiasm by being the easiest to program.

We’ve focused on making it easy for programmers, developers and system administrators to use our product. We know that they will be the ones who ultimately have to make our solutions work. We actively consider ease-of-use in all our decisions knowing that we want them to be our most enthusiastic fans in the future.

HPCwire: What advice would you give to up-and-coming computer scientists?

Wallach: I am not sure I am the best person to answer this! I practice what I call “Eclectic Engineering.” I believe to be innovative and productive you need to know as much as possible about the entire application/problem before focusing on one particular aspect. So, even if you want to be a compiler writer, you should know how to connect a logic analyzer to a circuit board.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This