Straight Shooter: A Conversation with 2008 Seymour Cray Award Winner Steve Wallach

By Michael Feldman

November 17, 2008

Steve Wallach, a supercomputing legend, has participated in all 20 supercomputing shows and will be honored at the 2008 event with IEEE’s Seymour Cray Award for his “contribution to high-performance computing through design of innovative vector and parallel computing systems, notably the Convex mini-supercomputer series, a distinguished industrial career and acts of public service.”

The Seymour Cray Award, established in 1998 by the IEEE Computer Society Board of Governors, is given each year to individuals whose innovative contributions to high-performance computing systems best exemplify the creative spirit demonstrated by the late Seymour Cray. Steve Wallach will accept the award on November 20 at 1:30 p.m. at SC08. In addition he will give a plenary presentation, “Processor Architecture: Past, Present, Future” on Wednesday, November 19 at 1:30 p.m.

Those who know Steve Wallach know he is never short on opinions, especially when it comes to high performance computing. HPCwire talked to Wallach about everything from the future of HPC to his philosophy on building a successful HPC business.

Steve Wallach, Convey Computer Corp.HPCwire: First of all, congratulations on the award. What’s the best thing about winning the Cray award?

Steve Wallach: Everything. This is one of our industry’s greatest honors and I am deeply appreciative. To be associated with Seymour Cray, even in name only, is phenomenal. When I was notified, I was speechless. When the Cray 1 was announced, I read every piece of literature I could find on it. Seymour Cray and his designs had an effect on me, from a technical perspective, more than any other single event.

HPCwire: What’s the single biggest change you’ve seen in high-performance computing in the past 20 years?

Wallach: Perhaps the biggest change is the leveling of the uniprocessor performance. For all practical purposes, with the leveling off of clock frequency and memory bandwidth, the performance of ONE processor core has not changed much. Thus, we have multicore and massive parallelism. In fact, if one calculates the memory bandwidth per core (total memory bandwidth divided by the number of cores) it is DECREASING over time (normalized for peak gflops/core). I was a member of several government studies (National Academy of Engineering and Defense Science Board) that highlighted this leveling-off phenomena.

If we can’t access the data, we can’t operate on the data. This is one reason the industry is looking into ways to create semantically rich instructions. We know we can achieve more compute performance once the data is located within the core’s memory/register infrastructure.

HPCwire: You state in your plenary presentation that the past 40 years has taught us that the “system that is easier to program will always win.” Why is that?

Wallach: It boils down to two issues: cost of ownership and cost of development. At a recent Los Alamos Conference, it was pointed out that the cost of a programmer for one year is MORE than the cost of acquiring a TERAFLOP (peak performance) system. We need to address the software productivity issue. Of course this is one of the main objectives of DARPA’s HPCS (High Productivity Computer Systems) program.

We address both issues with our new servers. For example, the Convey overall system hardware and software architecture is identical to the x86, with coprocessor instructions appearing as extensions to the x86. Thus, programmers benefit from 100 percent productivity and portability.

The Convey coprocessor and the Intel x86 share a common cache-coherent physical and virtual address space. What this means is that the programmer does not need to manage the physical memory on the coprocessor nor explicitly move data back and forth between the x86 main memory and the coprocessor main memory.

Finally, the Convey-engineered, ANSI standard C, C++, and Fortran compiler automatically generates x86 and coprocessor instructions. Only one compiler is used, which is a significant contrast to various forms of attached accelerators that use two or more compilers. Existing applications can be compiled as is, and language subsets and/or non-standard extensions are not required to use the Convey coprocessor.

HPCwire: After all the history with parallel programming, why is HPC application development still so problematic?

Wallach: As Yogi Berra said: “It is déjà vu all over again.” Many of the issues discussed and analyzed today, existed 20 years ago. Many applications still have code that is 20 years old. Many applications still have “serial math” as their underpinning. And before we forget, our universities are really not teaching parallel programming. But now HPC applications are moving into a different application space called Data Intensive Computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. The industry needs to put more time and money into software productivity — and we are doing that. Just last March, for example, Microsoft and Intel announced a joint research initiative focusing on improving programming tools for multicore processing.

HPCwire: What’s happened to innovation in high-performance computing?

Wallach: It’s always there. HPC represents the leading — and sometimes the bleeding edge of computing coupled with a variety of practical applications. Innovation also rules in the area of results gained from HPC. Without supercomputing power, we wouldn’t understand the human genome, travel to Mars, or — as our first customer the University of California, San Diego is experiencing — initiate unrestricted “blind searches” of massive protein databases to look for possible and unanticipated modifications in proteins. Modifications are particularly important for the study of diseases where multiple genes are involved, such as heart disease or cancer.

HPCwire: What is next for high performance computing?

Wallach: I believe there will be two major thrusts. One thrust will be in the software development area. We need new paradigms. At the recent Salishan Conference, this was pointed out over and over again. I expect we begin to have more widespread use of PGAS (Partitioned Global Address Space) languages. These languages are more productive than using MPI. And, with the introduction of Intel’s QPI, coupled with AMD’s HT, I expect PGAS to accelerate.

The other major thrust will be the widespread use of optical interconnects. We need more bisection bandwidth for the next generation MPPs. We also need more bandwidth for chip-to-chip connections. The telecommunications industry uses DWDM (dense wavelength division multiplexing) optics for all its long haul communications. Hopefully, a combination of Moore’s Law and material advances will bring this technology to centimeter-length busses.

HPCwire: What’s your philosophy of the HPC business and how has it changed over the years?

Wallach: It’s all about value for the customer — a philosophy that has stayed constant over the years. How do we make life easier for the customer? As an engineering company driven by engineers for engineers, we understand what makes one product difficult to work with and another one easy and we strive for easy. While our customers will probably buy our servers for the performance gains and price value, we’ll win their trust and enthusiasm by being the easiest to program.

We’ve focused on making it easy for programmers, developers and system administrators to use our product. We know that they will be the ones who ultimately have to make our solutions work. We actively consider ease-of-use in all our decisions knowing that we want them to be our most enthusiastic fans in the future.

HPCwire: What advice would you give to up-and-coming computer scientists?

Wallach: I am not sure I am the best person to answer this! I practice what I call “Eclectic Engineering.” I believe to be innovative and productive you need to know as much as possible about the entire application/problem before focusing on one particular aspect. So, even if you want to be a compiler writer, you should know how to connect a logic analyzer to a circuit board.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This