Straight Shooter: A Conversation with 2008 Seymour Cray Award Winner Steve Wallach

By Michael Feldman

November 17, 2008

Steve Wallach, a supercomputing legend, has participated in all 20 supercomputing shows and will be honored at the 2008 event with IEEE’s Seymour Cray Award for his “contribution to high-performance computing through design of innovative vector and parallel computing systems, notably the Convex mini-supercomputer series, a distinguished industrial career and acts of public service.”

The Seymour Cray Award, established in 1998 by the IEEE Computer Society Board of Governors, is given each year to individuals whose innovative contributions to high-performance computing systems best exemplify the creative spirit demonstrated by the late Seymour Cray. Steve Wallach will accept the award on November 20 at 1:30 p.m. at SC08. In addition he will give a plenary presentation, “Processor Architecture: Past, Present, Future” on Wednesday, November 19 at 1:30 p.m.

Those who know Steve Wallach know he is never short on opinions, especially when it comes to high performance computing. HPCwire talked to Wallach about everything from the future of HPC to his philosophy on building a successful HPC business.

Steve Wallach, Convey Computer Corp.HPCwire: First of all, congratulations on the award. What’s the best thing about winning the Cray award?

Steve Wallach: Everything. This is one of our industry’s greatest honors and I am deeply appreciative. To be associated with Seymour Cray, even in name only, is phenomenal. When I was notified, I was speechless. When the Cray 1 was announced, I read every piece of literature I could find on it. Seymour Cray and his designs had an effect on me, from a technical perspective, more than any other single event.

HPCwire: What’s the single biggest change you’ve seen in high-performance computing in the past 20 years?

Wallach: Perhaps the biggest change is the leveling of the uniprocessor performance. For all practical purposes, with the leveling off of clock frequency and memory bandwidth, the performance of ONE processor core has not changed much. Thus, we have multicore and massive parallelism. In fact, if one calculates the memory bandwidth per core (total memory bandwidth divided by the number of cores) it is DECREASING over time (normalized for peak gflops/core). I was a member of several government studies (National Academy of Engineering and Defense Science Board) that highlighted this leveling-off phenomena.

If we can’t access the data, we can’t operate on the data. This is one reason the industry is looking into ways to create semantically rich instructions. We know we can achieve more compute performance once the data is located within the core’s memory/register infrastructure.

HPCwire: You state in your plenary presentation that the past 40 years has taught us that the “system that is easier to program will always win.” Why is that?

Wallach: It boils down to two issues: cost of ownership and cost of development. At a recent Los Alamos Conference, it was pointed out that the cost of a programmer for one year is MORE than the cost of acquiring a TERAFLOP (peak performance) system. We need to address the software productivity issue. Of course this is one of the main objectives of DARPA’s HPCS (High Productivity Computer Systems) program.

We address both issues with our new servers. For example, the Convey overall system hardware and software architecture is identical to the x86, with coprocessor instructions appearing as extensions to the x86. Thus, programmers benefit from 100 percent productivity and portability.

The Convey coprocessor and the Intel x86 share a common cache-coherent physical and virtual address space. What this means is that the programmer does not need to manage the physical memory on the coprocessor nor explicitly move data back and forth between the x86 main memory and the coprocessor main memory.

Finally, the Convey-engineered, ANSI standard C, C++, and Fortran compiler automatically generates x86 and coprocessor instructions. Only one compiler is used, which is a significant contrast to various forms of attached accelerators that use two or more compilers. Existing applications can be compiled as is, and language subsets and/or non-standard extensions are not required to use the Convey coprocessor.

HPCwire: After all the history with parallel programming, why is HPC application development still so problematic?

Wallach: As Yogi Berra said: “It is déjà vu all over again.” Many of the issues discussed and analyzed today, existed 20 years ago. Many applications still have code that is 20 years old. Many applications still have “serial math” as their underpinning. And before we forget, our universities are really not teaching parallel programming. But now HPC applications are moving into a different application space called Data Intensive Computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. The industry needs to put more time and money into software productivity — and we are doing that. Just last March, for example, Microsoft and Intel announced a joint research initiative focusing on improving programming tools for multicore processing.

HPCwire: What’s happened to innovation in high-performance computing?

Wallach: It’s always there. HPC represents the leading — and sometimes the bleeding edge of computing coupled with a variety of practical applications. Innovation also rules in the area of results gained from HPC. Without supercomputing power, we wouldn’t understand the human genome, travel to Mars, or — as our first customer the University of California, San Diego is experiencing — initiate unrestricted “blind searches” of massive protein databases to look for possible and unanticipated modifications in proteins. Modifications are particularly important for the study of diseases where multiple genes are involved, such as heart disease or cancer.

HPCwire: What is next for high performance computing?

Wallach: I believe there will be two major thrusts. One thrust will be in the software development area. We need new paradigms. At the recent Salishan Conference, this was pointed out over and over again. I expect we begin to have more widespread use of PGAS (Partitioned Global Address Space) languages. These languages are more productive than using MPI. And, with the introduction of Intel’s QPI, coupled with AMD’s HT, I expect PGAS to accelerate.

The other major thrust will be the widespread use of optical interconnects. We need more bisection bandwidth for the next generation MPPs. We also need more bandwidth for chip-to-chip connections. The telecommunications industry uses DWDM (dense wavelength division multiplexing) optics for all its long haul communications. Hopefully, a combination of Moore’s Law and material advances will bring this technology to centimeter-length busses.

HPCwire: What’s your philosophy of the HPC business and how has it changed over the years?

Wallach: It’s all about value for the customer — a philosophy that has stayed constant over the years. How do we make life easier for the customer? As an engineering company driven by engineers for engineers, we understand what makes one product difficult to work with and another one easy and we strive for easy. While our customers will probably buy our servers for the performance gains and price value, we’ll win their trust and enthusiasm by being the easiest to program.

We’ve focused on making it easy for programmers, developers and system administrators to use our product. We know that they will be the ones who ultimately have to make our solutions work. We actively consider ease-of-use in all our decisions knowing that we want them to be our most enthusiastic fans in the future.

HPCwire: What advice would you give to up-and-coming computer scientists?

Wallach: I am not sure I am the best person to answer this! I practice what I call “Eclectic Engineering.” I believe to be innovative and productive you need to know as much as possible about the entire application/problem before focusing on one particular aspect. So, even if you want to be a compiler writer, you should know how to connect a logic analyzer to a circuit board.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This