Latest Benchmark Results on NEC Super Highlights SX-9 Performance

By John Boyd

November 19, 2008

Researchers at Tohoku University in Sendai, north-eastern Japan, announced on Wednesday that they had broken a batch of performance records on their NEC SX-9 supercomputer, as measured on the HPC Challenge Benchmark test. Hiroaki Kobayashi, director the university’s Cyberscience Center, said the SX-9 had achieved the highest marks ever in 19 of 28 areas the test evaluates in computer processing, memory bandwidth and networking bandwidth. The scores were matched against those previously achieved on the same independent benchmark test by other leading supercomputers, including IBM’s Blue Gene/L, Cray’s XT3/4 and SGI’s Altix ICE, with the SX-9 coming out on top 64 percent of the time.

The news comes at a good time for NEC. The Tokyo-based manufacturer of vector-based supercomputers is battling in a market that has been moving away from its expensive high-performance vector processing models to systems that use more modestly priced commodity-type superscalar CPUs. These cheaper chips can be coupled tightly together or used in clusters of computers to achieve similar or better results than vector competitors — at least in some areas of supercomputing.

At Tohoku University, however, a stronghold of vector computing since it installed its first SX-1 in 1985, Director Kobayashi argues that vector computing is essential for certain types of applications and will only increase in importance as advances are made in parallel processing.

“In the future, data parallel processing will become more important in high performance computing,” says Kobayashi. “And vector processing provides a very efficient model for it.” This is why, he adds, Intel, which has long provided short vector SIMD code extensions for its x86 architecture, is employing wider vector operations in its upcoming Larrabee graphics processing chip. “Regarding parallel processing, at the instruction-set level, vector instruction sets are the key to future processors, no matter what kind of micro-architecture is used,” says Kobayashi.”

In addition, he emphasizes that for the kind of programs that the 1,500 paying supercomputer users of the University’s Cyberscience Center want to run, vector is still king. Most of these users are involved in government and academic research programs in areas like aerospace, environmental simulations, structural analysis and nanotechnology. “They want to conduct very large simulations, so are looking for an efficient handling mechanism to process extremely large amounts of data in a single operation,” says Kobayashi. “Vector processing is best suited to this kind of application.”

The SX-9 employs a single-chip vector processor capable of reaching 102 GFLOPS. Up to 16 CPUs sharing 1 TB of memory can be incorporated on a single node, combing to produce 1.6 TFLOPS of peak performance. The Tohoku University SX-9 set-up, which began operations this April, consists of 16 nodes, each of 16 CPUs, producing an overall peak performance of 26 TFLOPS. On a sustained performance bases, the Cyberscience Center’s test results show a single SX-9 CPU outperforms that of the previous SX-8R by between four to eight times, depending on the application.

Much of the new CPU’s improved performance can be accounted for by the addition of an arithmetic unit and raising the number of vector pipelines — all integrated on a single chip that is the first to surpass 100 GFLOPS.

But Kobayashi notes that a new feature of the SX-9, the inclusion of an assignable data buffer or ADB, has also helped boost performance significantly. “ADB is software-controllable cache memory,” he explains. “It lets the user assign the data to be cached, which prevents it from being evicted.”

In a simulation used to detect the presence of land mines with electromagnetic waves, for instance, performance increased by 20 percent when ADB was used. In another simulation, which tracked the movement of tectonic plates (the cause of earthquakes), the use of ADB improved performance by 75 percent, while a simulation involving the physics of plasma under certain conditions saw performance jump two times when employing ADB.

Despite such gains, Kobayashi has a gripe with the current ADB design: the cache space is limited to just 256 kilobytes. This means users cannot place all the target data in the cache; rather, they must select only the portion that they judge will work most effectively in ADB. To determine the optimum amount of cache memory, the Cyberscience Center, which is developing a software simulator based on the SX-9 architecture to design future supercomputer models, ran simulations using real application code. To achieve the highest performance, the researchers found that a minimum of 8 MB of ADB memory is necessary. NEC has been so advised.

Regarding the HPC Challenge Benchmark results, it was no surprise that the SX-9, the architecture of which is particularly designed to produce efficient processing of large data amounts, came out on top in memory performance and did well in networking bandwidth. But Kobayashi was also keen to point out that when it came to computing performance, despite the relatively small size of the Center’s SX-9 set-up, it still competed well against much larger configured systems.

“In the case of global-FFT testing, for instance, we still made second place to Cray’s XT3, which is a huge system, with maybe 100 times more processors,” says Kobayashi. “And while the XT3’s peak performance was five times higher (than our system) its global-FFT result was only 20 percent higher. So if we could add even just one more lane (consisting of four nodes) we would expect to do much better.”

In recent years NEC has had to relinquish its No. 1 position in the TOP500 list of best performing supercomputers to scalar-based systems from Cray, IBM and other competitors when it comes to sheer peak speeds. As a result, it has turned to emphasizing efficient sustained performance and productivity. But now there is belief within the company that given a large enough SX-9 installation, NEC could once again challenge for the top performance spot, which it held from 2002 to 2004 with its SX-6 generation.

“Next March JAMSTEC (Japan Agency for Marine-Earth Science Technology) will begin operations of its Earth Simulator II,” notes Rie Toh, manager of NEC’s HPC marketing promotion division. The system, used to forecast global climate changes, typhoons and other extreme weather conditions, as well as predict earthquakes, volcano activity and the like, will use NEC supercomputer technology, as did the previous Earth Simulator I. The new system will incorporate 160 SX-9 nodes, each containing eight CPUs, making a total of 1280 CPUs. NEC says this would produce a peak performance of 131 TFLOPS. “Given that Cray’s XT3 holds the HPC Challenge Benchmark’s highest score for G-FFT system performance with 124.4 TFLOPS,” says Toh, “we are eager to see what the SX-9-based Earth Simulator II will achieve when it’s up and running.”

But NEC’s window of opportunity to win speed-king bragging rights may not be open for long. In the endless game of breaking supercomputer performance records, Cray has just announced it plans to ship its next-generation XT5 model at about the time the Earth Simulator II is to begin operations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This