Latest Benchmark Results on NEC Super Highlights SX-9 Performance

By John Boyd

November 19, 2008

Researchers at Tohoku University in Sendai, north-eastern Japan, announced on Wednesday that they had broken a batch of performance records on their NEC SX-9 supercomputer, as measured on the HPC Challenge Benchmark test. Hiroaki Kobayashi, director the university’s Cyberscience Center, said the SX-9 had achieved the highest marks ever in 19 of 28 areas the test evaluates in computer processing, memory bandwidth and networking bandwidth. The scores were matched against those previously achieved on the same independent benchmark test by other leading supercomputers, including IBM’s Blue Gene/L, Cray’s XT3/4 and SGI’s Altix ICE, with the SX-9 coming out on top 64 percent of the time.

The news comes at a good time for NEC. The Tokyo-based manufacturer of vector-based supercomputers is battling in a market that has been moving away from its expensive high-performance vector processing models to systems that use more modestly priced commodity-type superscalar CPUs. These cheaper chips can be coupled tightly together or used in clusters of computers to achieve similar or better results than vector competitors — at least in some areas of supercomputing.

At Tohoku University, however, a stronghold of vector computing since it installed its first SX-1 in 1985, Director Kobayashi argues that vector computing is essential for certain types of applications and will only increase in importance as advances are made in parallel processing.

“In the future, data parallel processing will become more important in high performance computing,” says Kobayashi. “And vector processing provides a very efficient model for it.” This is why, he adds, Intel, which has long provided short vector SIMD code extensions for its x86 architecture, is employing wider vector operations in its upcoming Larrabee graphics processing chip. “Regarding parallel processing, at the instruction-set level, vector instruction sets are the key to future processors, no matter what kind of micro-architecture is used,” says Kobayashi.”

In addition, he emphasizes that for the kind of programs that the 1,500 paying supercomputer users of the University’s Cyberscience Center want to run, vector is still king. Most of these users are involved in government and academic research programs in areas like aerospace, environmental simulations, structural analysis and nanotechnology. “They want to conduct very large simulations, so are looking for an efficient handling mechanism to process extremely large amounts of data in a single operation,” says Kobayashi. “Vector processing is best suited to this kind of application.”

The SX-9 employs a single-chip vector processor capable of reaching 102 GFLOPS. Up to 16 CPUs sharing 1 TB of memory can be incorporated on a single node, combing to produce 1.6 TFLOPS of peak performance. The Tohoku University SX-9 set-up, which began operations this April, consists of 16 nodes, each of 16 CPUs, producing an overall peak performance of 26 TFLOPS. On a sustained performance bases, the Cyberscience Center’s test results show a single SX-9 CPU outperforms that of the previous SX-8R by between four to eight times, depending on the application.

Much of the new CPU’s improved performance can be accounted for by the addition of an arithmetic unit and raising the number of vector pipelines — all integrated on a single chip that is the first to surpass 100 GFLOPS.

But Kobayashi notes that a new feature of the SX-9, the inclusion of an assignable data buffer or ADB, has also helped boost performance significantly. “ADB is software-controllable cache memory,” he explains. “It lets the user assign the data to be cached, which prevents it from being evicted.”

In a simulation used to detect the presence of land mines with electromagnetic waves, for instance, performance increased by 20 percent when ADB was used. In another simulation, which tracked the movement of tectonic plates (the cause of earthquakes), the use of ADB improved performance by 75 percent, while a simulation involving the physics of plasma under certain conditions saw performance jump two times when employing ADB.

Despite such gains, Kobayashi has a gripe with the current ADB design: the cache space is limited to just 256 kilobytes. This means users cannot place all the target data in the cache; rather, they must select only the portion that they judge will work most effectively in ADB. To determine the optimum amount of cache memory, the Cyberscience Center, which is developing a software simulator based on the SX-9 architecture to design future supercomputer models, ran simulations using real application code. To achieve the highest performance, the researchers found that a minimum of 8 MB of ADB memory is necessary. NEC has been so advised.

Regarding the HPC Challenge Benchmark results, it was no surprise that the SX-9, the architecture of which is particularly designed to produce efficient processing of large data amounts, came out on top in memory performance and did well in networking bandwidth. But Kobayashi was also keen to point out that when it came to computing performance, despite the relatively small size of the Center’s SX-9 set-up, it still competed well against much larger configured systems.

“In the case of global-FFT testing, for instance, we still made second place to Cray’s XT3, which is a huge system, with maybe 100 times more processors,” says Kobayashi. “And while the XT3’s peak performance was five times higher (than our system) its global-FFT result was only 20 percent higher. So if we could add even just one more lane (consisting of four nodes) we would expect to do much better.”

In recent years NEC has had to relinquish its No. 1 position in the TOP500 list of best performing supercomputers to scalar-based systems from Cray, IBM and other competitors when it comes to sheer peak speeds. As a result, it has turned to emphasizing efficient sustained performance and productivity. But now there is belief within the company that given a large enough SX-9 installation, NEC could once again challenge for the top performance spot, which it held from 2002 to 2004 with its SX-6 generation.

“Next March JAMSTEC (Japan Agency for Marine-Earth Science Technology) will begin operations of its Earth Simulator II,” notes Rie Toh, manager of NEC’s HPC marketing promotion division. The system, used to forecast global climate changes, typhoons and other extreme weather conditions, as well as predict earthquakes, volcano activity and the like, will use NEC supercomputer technology, as did the previous Earth Simulator I. The new system will incorporate 160 SX-9 nodes, each containing eight CPUs, making a total of 1280 CPUs. NEC says this would produce a peak performance of 131 TFLOPS. “Given that Cray’s XT3 holds the HPC Challenge Benchmark’s highest score for G-FFT system performance with 124.4 TFLOPS,” says Toh, “we are eager to see what the SX-9-based Earth Simulator II will achieve when it’s up and running.”

But NEC’s window of opportunity to win speed-king bragging rights may not be open for long. In the endless game of breaking supercomputer performance records, Cray has just announced it plans to ship its next-generation XT5 model at about the time the Earth Simulator II is to begin operations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This