Latest Benchmark Results on NEC Super Highlights SX-9 Performance

By John Boyd

November 19, 2008

Researchers at Tohoku University in Sendai, north-eastern Japan, announced on Wednesday that they had broken a batch of performance records on their NEC SX-9 supercomputer, as measured on the HPC Challenge Benchmark test. Hiroaki Kobayashi, director the university’s Cyberscience Center, said the SX-9 had achieved the highest marks ever in 19 of 28 areas the test evaluates in computer processing, memory bandwidth and networking bandwidth. The scores were matched against those previously achieved on the same independent benchmark test by other leading supercomputers, including IBM’s Blue Gene/L, Cray’s XT3/4 and SGI’s Altix ICE, with the SX-9 coming out on top 64 percent of the time.

The news comes at a good time for NEC. The Tokyo-based manufacturer of vector-based supercomputers is battling in a market that has been moving away from its expensive high-performance vector processing models to systems that use more modestly priced commodity-type superscalar CPUs. These cheaper chips can be coupled tightly together or used in clusters of computers to achieve similar or better results than vector competitors — at least in some areas of supercomputing.

At Tohoku University, however, a stronghold of vector computing since it installed its first SX-1 in 1985, Director Kobayashi argues that vector computing is essential for certain types of applications and will only increase in importance as advances are made in parallel processing.

“In the future, data parallel processing will become more important in high performance computing,” says Kobayashi. “And vector processing provides a very efficient model for it.” This is why, he adds, Intel, which has long provided short vector SIMD code extensions for its x86 architecture, is employing wider vector operations in its upcoming Larrabee graphics processing chip. “Regarding parallel processing, at the instruction-set level, vector instruction sets are the key to future processors, no matter what kind of micro-architecture is used,” says Kobayashi.”

In addition, he emphasizes that for the kind of programs that the 1,500 paying supercomputer users of the University’s Cyberscience Center want to run, vector is still king. Most of these users are involved in government and academic research programs in areas like aerospace, environmental simulations, structural analysis and nanotechnology. “They want to conduct very large simulations, so are looking for an efficient handling mechanism to process extremely large amounts of data in a single operation,” says Kobayashi. “Vector processing is best suited to this kind of application.”

The SX-9 employs a single-chip vector processor capable of reaching 102 GFLOPS. Up to 16 CPUs sharing 1 TB of memory can be incorporated on a single node, combing to produce 1.6 TFLOPS of peak performance. The Tohoku University SX-9 set-up, which began operations this April, consists of 16 nodes, each of 16 CPUs, producing an overall peak performance of 26 TFLOPS. On a sustained performance bases, the Cyberscience Center’s test results show a single SX-9 CPU outperforms that of the previous SX-8R by between four to eight times, depending on the application.

Much of the new CPU’s improved performance can be accounted for by the addition of an arithmetic unit and raising the number of vector pipelines — all integrated on a single chip that is the first to surpass 100 GFLOPS.

But Kobayashi notes that a new feature of the SX-9, the inclusion of an assignable data buffer or ADB, has also helped boost performance significantly. “ADB is software-controllable cache memory,” he explains. “It lets the user assign the data to be cached, which prevents it from being evicted.”

In a simulation used to detect the presence of land mines with electromagnetic waves, for instance, performance increased by 20 percent when ADB was used. In another simulation, which tracked the movement of tectonic plates (the cause of earthquakes), the use of ADB improved performance by 75 percent, while a simulation involving the physics of plasma under certain conditions saw performance jump two times when employing ADB.

Despite such gains, Kobayashi has a gripe with the current ADB design: the cache space is limited to just 256 kilobytes. This means users cannot place all the target data in the cache; rather, they must select only the portion that they judge will work most effectively in ADB. To determine the optimum amount of cache memory, the Cyberscience Center, which is developing a software simulator based on the SX-9 architecture to design future supercomputer models, ran simulations using real application code. To achieve the highest performance, the researchers found that a minimum of 8 MB of ADB memory is necessary. NEC has been so advised.

Regarding the HPC Challenge Benchmark results, it was no surprise that the SX-9, the architecture of which is particularly designed to produce efficient processing of large data amounts, came out on top in memory performance and did well in networking bandwidth. But Kobayashi was also keen to point out that when it came to computing performance, despite the relatively small size of the Center’s SX-9 set-up, it still competed well against much larger configured systems.

“In the case of global-FFT testing, for instance, we still made second place to Cray’s XT3, which is a huge system, with maybe 100 times more processors,” says Kobayashi. “And while the XT3’s peak performance was five times higher (than our system) its global-FFT result was only 20 percent higher. So if we could add even just one more lane (consisting of four nodes) we would expect to do much better.”

In recent years NEC has had to relinquish its No. 1 position in the TOP500 list of best performing supercomputers to scalar-based systems from Cray, IBM and other competitors when it comes to sheer peak speeds. As a result, it has turned to emphasizing efficient sustained performance and productivity. But now there is belief within the company that given a large enough SX-9 installation, NEC could once again challenge for the top performance spot, which it held from 2002 to 2004 with its SX-6 generation.

“Next March JAMSTEC (Japan Agency for Marine-Earth Science Technology) will begin operations of its Earth Simulator II,” notes Rie Toh, manager of NEC’s HPC marketing promotion division. The system, used to forecast global climate changes, typhoons and other extreme weather conditions, as well as predict earthquakes, volcano activity and the like, will use NEC supercomputer technology, as did the previous Earth Simulator I. The new system will incorporate 160 SX-9 nodes, each containing eight CPUs, making a total of 1280 CPUs. NEC says this would produce a peak performance of 131 TFLOPS. “Given that Cray’s XT3 holds the HPC Challenge Benchmark’s highest score for G-FFT system performance with 124.4 TFLOPS,” says Toh, “we are eager to see what the SX-9-based Earth Simulator II will achieve when it’s up and running.”

But NEC’s window of opportunity to win speed-king bragging rights may not be open for long. In the endless game of breaking supercomputer performance records, Cray has just announced it plans to ship its next-generation XT5 model at about the time the Earth Simulator II is to begin operations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This