Oak Ridge Dives Into Science at the Petascale

By Leo Williams (Science Writer, ORNL)

November 19, 2008

The petascale age is here. After years of predicting the scientific advancements they would be able to make with petaflop supercomputers capable of a thousand trillion calculations each second, researchers now have an opportunity to prove their point. Oak Ridge National Laboratory (ORNL) recently unveiled the first petascale system dedicated to scientific research, a Cray XT machine with a theoretical peak performance of 1.64 petaflops.

This behemoth — an upgrade to ORNL’s Jaguar system — comprises more than 45,000 quad-core AMD Opteron processors. It boasts an unprecedented 362 terabytes of memory, which is three times more than any other system, a 10-petabyte file system, 578 terabytes per second memory bandwidth, and input/output bandwidth of 284 gigabytes per second. We talked with Doug Kothe, director of science at ORNL’s National Center for Computational Sciences [NCCS], about the challenges of and potential breakthroughs in science now possible with this built-for-science petascale system.

HPCwire: ORNL’s upgraded Jaguar will be the first petascale supercomputer designed for and dedicated to open scientific research. What are the immediate plans for putting this system to use?

Doug Kothe: The current plan is for the system to be used during much of the coming year for specific high-impact projects of national importance. In addition, it will continue to support the INCITE program [Innovative and Novel Computational Impact on Theory and Experiment program, sponsored by the Office of Advanced Scientific Computing Research (ASCR) in the Department of Energy’s (DOE’s) Office of Science]. This first group is known as Transition to Operations, or T2O, projects. They are tackling science problems — both applied and fundamental — that cannot be solved without Jaguar’s speed, memory, and infrastructure. We have been working closely with ASCR and with members of the computational science community to identify projects that have application software that can effectively utilize a large fraction of the system.

We expect these projects to deliver important results. Since they will be led by the community’s most sophisticated users and prominent scientists, early simulations on Jaguar will also help us harden the system for a broader collection of projects later in the year.

The selection of science problems for early access to the petascale system is by no means finalized. Computational researchers who believe they can fully exploit this system to deliver far-reaching results should contact us via the Web. We have three principal goals during the system’s early phase: deliver important, high-impact science results and advancements; harden the system for production; and embrace a broad user community capable of and prepared for using the system.

HPCwire: Will specific science domains have precedence?

Kothe: We are looking at all research areas that are important to DOE’s mission, from energy assurance to climate-change science to more basic fundamental and applied science. The breadth and depth of critical science potentially solvable on this system are daunting, with domains including fusion, biology, atomic physics, chemistry, nuclear energy, materials and nanoscience, climate and geosciences, astrophysics, high-energy physics, turbulence, and combustion. And this is not an exhaustive list.

HPCwire: Can you give us some idea of the kind of results we can expect?

Kothe: Sure. Looking at climate studies, we hope to be able to say with increased confidence just how good global models will be at predicting regional climate change on the scale of decades. We should also be able to better predict the likelihood of abrupt climate change — change taking place over decades rather than centuries — and the potential for increasingly destructive storms around the world as the climate gets warmer.

As I mentioned before, energy assurance is extremely important to us as a DOE lab, and we will be looking at energy production, storage, and transmission from a variety of angles. We expect to see new insights into the physical properties of biomass that will help us overcome the technological impediments to mass cellulosic bioethanol production. We expect to make significant progress in understanding and controlling the core plasma turbulence that will exist in the ITER fusion reactor. And we expect to dramatically improve our understanding of what happens inside the core of a nuclear fission reactor by removing many of the simplifying assumptions and estimates that had previously been unavoidable in modeling neutron transport.

Other areas being investigated could ultimately affect how we as a society produce and use energy. We will be looking for significant new insights into electrical energy storage involving, for instance, the storage and flow of energy in carbon nanostructured supercapacitor systems. Advances in this area are important both to mobile devices and to the viability of renewable energy resources — such as solar and wind power — that must be stored and transported. We are working to embrace the energy storage community, and we currently have an exciting project committed to going after this challenge on the Jaguar petascale system.

We will also be seeing first-principles studies of strongly correlated materials such as those often found in magnets and superconductors. If we can understand with confidence the effect of disorder on superconducting transition temperatures, we can revolutionize energy transmission, transportation, and a number of other areas. High-temperature superconducting cables, for instance, will be able to carry electricity indefinitely without any loss.

HPCwire: What other areas are being targeted during the early phases of the Jaguar petascale system?

Kothe: There are many other areas. In biology we hope to see the first accurate microscopic structural description of the dynamics of water. This will be indispensible as we move forward to atomic-scale biological simulations. And we will continue to play a major role in computational astrophysics research. For example, simulations of binary black holes and the gravitational radiation they emit will support both current and future projects aimed at detecting gravitational waves. And we will be looking at the first realistic model of the closest supernova in nearly 400 years — SN1987A. These simulations will make quantitative predictions of key observables associated with core-collapse supernovas, including element synthesis.

HPCwire: Does industry fit into your plans?

Kothe: Yes, very much so. The INCITE program has been very successful in attracting companies to perform large-scale simulation science on ASCR systems such as Jaguar. At ORNL, for example, I have worked closely with industry projects involving Boeing and General Motors. What I’ve seen is that these companies bring very talented researchers to the table with very challenging, compelling problems. Their problems are not easily simulated, and for the most part they demand scalable application tools just like DOE and academic projects do. To borrow from the Council on Competitiveness, industry must out-compute to out-compete. I firmly believe that statement is right; hence, our role with U.S. industry is to work with them in delivering science results that help them become more competitive. Given today’s economy, it is imperative that we focus all the more on helping these companies gain a stronger foothold.

HPCwire: The computational science community has been anticipating computers capable of a petaflop or greater for some time. How will the research performed on these systems differ from that done on earlier systems?

Kothe: A decade ago the game for people who wanted to do scientific research aided by computer simulation was simplify, simplify, simplify. We weren’t able to easily solve coupled nonlinear systems, so we would uncouple and linearize them to give us something we could solve. In those days you had to argue that these simplified models described reality, but more often than not they really didn’t at the level needed for predictive accuracy.

In contrast, the mindset today is very different; researchers no longer see the computer as a restraint. Young scientists don’t realize how great they have it. In fact, there is almost nothing out there that we can’t at least think about modeling, if not on current systems then one or two generations down the line.

HPCwire: So is this system going to be too difficult to use for scientists and engineers who have never been engaged in “big computing”?

Kothe: We don’t think so. We have already run at least a half-dozen simulation tools at scale on this system, and it’s still in its infant stage, just seven weeks after the last cabinet arrived. The performance of these applications, measured by raw sustained compute speed and parallel efficiency, is impressive.

This early evidence and our optimism are based on two simple facts. First, Jaguar’s hardware and software environments use the same programming model as before for users and developers. For them there are no drastic changes. The operating system is Linux-based, and the integrated development environment of compilers, debuggers, performance tools, and the like are unchanged. Existing scientific application software doesn’t have to be redesigned, refactored, or rewritten just to execute on the system. In retrospect, the seamlessness of the transition from that perspective was frankly surprising.

Second, Jaguar is a well-balanced system, designed for the targeted science applications and well matched to them. The AMD Opteron processor, for example, is a great chip for science: It is fast, has great memory and intersocket bandwidth, and is easy to program, since it uses the same X86 instruction set we have used for years. Similar examples exist in the interconnect and I/O infrastructure. The total memory on the system is incredible — more than three times any other system.

HPCwire: Why is memory so important?

Kothe: Without sufficient memory, scientists must oversimplify assumptions or run at resolutions so low they miss important characteristics. For example, global climate simulations do not produce hurricanes if the resolution is too low. More memory in systems such as Jaguar means more space for additional information about the simulation model, such as more model equations and more complicated model equations. Generally the ability of a simulation to match reality is directly correlated with that simulation having adequately complex models. And the list goes on. We’ve gone out of our way to ensure that Jaguar adequately addresses application requirements. In fact, we’ve documented our requirements collection process, data, and analysis in a number of recent reports, available here.

HPCwire: How have the challenges to using these systems grown?

Kothe: As I said, the programming architecture for the petascale Jaguar is very similar to earlier versions of the system. Current Jaguar users will have to optimize their codes for the new system, but they won’t necessarily have to redesign their software and algorithms.

That having been said, world-class supercomputers have always been a challenge to use, and new systems require far more parallelism from the codes running on them than we’ve ever seen before. I can remember when a simulation on 512 processors was considered massively parallel, but then again I’m not an “early-career” researcher. But now we’re working with systems that have hundreds of thousands of processing cores, and that number is only climbing.

Of course, we realize that not all of our users will be supercomputer experts. That’s why we have a comprehensive, that is, multileveled support system with a proven track record that others are emulating. Each major project at the NCCS has a scientific liaison assigned from our Scientific Computing Group. This is a group of mostly PhD-level computer scientists and domain scientists who are experts at taking important scientific questions and translating them into effective supercomputing applications. These folks also have productive research accomplishments and careers in their own right; in short, they are on top of their game, which makes them especially adept at being useful members of the NCCS project teams.

The challenge as these systems grow is to exploit the memory and processor hierarchy that we’re seeing in current and next-generation computing nodes. For the foreseeable future, what we see in computing nodes is a hybrid architecture. They’ll have two or three different types and levels of memory accessible in different ways. Heterogeneous architectures with floating-point acceleration, like the Los Alamos RoadRunner system, are also likely to stay. The challenge will be to have your application easily know that a particular processor or memory is different from another and respond accordingly.

We’re also going to have to build more robustness and fault tolerance into applications. The more processors you have, the more likely it is that one or more used by your application will go down during the course of a run. Currently, almost all applications need to halt and restart from the last saved state if a node or collection of nodes falls out. We need to program applications so that they are able to keep going.

It won’t be easy. We don’t have more fault tolerance now because it’s hard to program. It’s like having to change a flat tire while the vehicle is still moving.

HPCwire: Are you going to be able to handle all that data?

Kothe: This is a major consideration. We believe we’re well prepared for the input, output, processing such as analytics, knowledge discovery, and visualization, and transfer of data our scientific applications require. We expect to generate over 5 petabytes of new data just during this early science period, which is purported to be more than double the data embodied within all U.S. academic research libraries. That’s a lot, and it will be created over a period of just several months. Similar requirements are coming, for example, from the climate community in supporting their IPCC AR5 simulations [for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change]. Standing up the I/O infrastructure to accommodate these data requirements is an incredible accomplishment, and we believe we have people with the talent and experience to actually pull this off. Without this data infrastructure, Jaguar and the scientific applications running on it would be effectively useless. Simulation-based science is data-intensive and data-driven.

HPCwire: What do you see for computational science in the longer-term future?

Kothe: I think we’re going to see large-scale computer simulation in areas that may seem strange today. We’ll see simulations of human behavior and social networks. We’ll see more sophisticated and more valuable simulations of biological systems; so instead of a chain of molecules, we’ll be able to simulate full cells, organs, and even individuals. We’ll see systems of systems; for example, instead of one nuclear reactor, we’ll see an entire nuclear fuel cycle. We’ll see first-principles-based simulations at larger and larger length scales and over longer and longer time. We’ll see such rapid turnaround on simulations that complex nonlinear optimizations will become commonplace. We’ll see materials and chemical catalysts by design. We’ll better understand the complex biogeochemical cycles that underpin global ecosystems and control the sustainability of life on Earth. We’ll see the deciphering and comprehending of the core laws governing the universe. Potentially, this will all happen in our lifetimes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This