The Greening of Renault’s Formula One CFD Program

By Michael Feldman

November 19, 2008

Because of the compute and power density of petascale systems, all new supercomputer facilities are being built with energy efficiency in mind. This includes that new supercomputer center at the University of California at San Diego and the facility under construction at University of Illinois at Urbana-Champaign. The latter is being built to house the multi-petaflop “Blue Waters” supercomputer in 2011. Both datacenters will employ chilled water to be routed directly into the into the computer housing — a much more efficient cooling method than forced air. State-of-the art cooling for petascale machines is now a given, but even industrial HPC datacenters are going green.

This includes the CFD centers being built for Formula One racecar designs. While racecars aren’t exactly known for their fuel efficiency, there are plenty of opportunities to save energy when developing them. Most serious F1 teams now use high performance computers to help design these cutting-edge autos, so choosing the right HPC system and housing it in a well-designed facility can go a long way in minimizing environmental impact.

At SC08 this week, Appro announced it had completed the final deployment of 38 teraflop Xtreme-X supercomputer for the ING Renault F1 Team. The new system embodies pretty much the latest generation of cluster technology, with AMD quad-core nodes lashed together with DDR InfiniBand. The Appro machine represents a new level of commitment to HPC by the F1 team at Renault. Its previous machine was a 1.8 teraflop cluster housed in a conventional forced-air computer room. The new system lives in a brand new Computational Aerodynamics Research Centre located in the English countryside, north of Oxford.

The facility was built green — not just in terms of energy efficiency, but also in regards to overall environmental impact. According to Graeme Hackland, the CFD center’s IT manager, they were committed to operating an environmentally responsible facility from the start. And lessons learned from their previous computing facility led them to develop a much more energy-efficient plan.

Since the facility was built in the countryside, they had to negotiate with local farmers to bring the electric cable across their fields, while also working with Scottish and Southern Energy to get the energy onsite. “The cost of upgrading energy on this site is going to be huge, so the more we can do to reduce waste, the better it is,” explained Hackland.

The whole structure, which includes the offices and the computer room, was built underground. Undoubtedly, this was more expensive to build than an above-ground structure, but it was still just one-fourth the cost of building a new wind tunnel, even taking into account the cost of the computer hardware. The unconventional design also presented another immediate advantage. The underground nature of the building meant they had no planning restrictions. The request for the new structure passed on its initial application. In the UK, where land is especially precious, there are many more land use restrictions than the US, so getting past the local planning commission is a big deal.

The other nice attribute of an underground facility is an evenly cool temperature. Once you get into the subsoil, the temperature varies very little from season to season, since the soil acts as an enormous thermal buffer. In the middle of England, the temperature below ground is about 10 degrees Celsius (50 degrees Fahrenheit). While this may be a bit chilly for humans, its pretty much perfect for sweaty supercomputers.

Of course you can’t rely on the ambient temperature of the room to cool a multi-teraflop cluster, even at 50 degrees Fahrenheit. The Appro machine is water cooled, using APC’s InfraStruXure solution, which allows them just to cool the hot aisle instead of the whole room. No forced air is used at all, saving even more energy. Furthermore, the CFD center operators have plans to recycle some of the waste heat to be used in the rest of the facility.

Presently the CFD center is using about 40 percent of its allotted power, so they have some room for further expansion. They’re also counting on increases in performance per watt as new processors and systems are rolled out. Since the size of the datacenter is static, computational density is also important. Here again, they’re counting on Moore’s Law and clever system engineers to keep shrinking computers.

So is the Appro cluster performing as expected in its new digs? It’s probably too soon to tell. The Renault engineers have only had access to the machine for production work since late summer. They’ve already used the system for some design mods for two of the races for this year’s R28 F1 racecar, but the 2008 circuit is coming to a close. Most of the CFD design work is now being applied toward next year’s R29. The first physical iteration of that car is expected before Christmas.

Wayne Glanfield, the CFD Analysis project leader, says with the larger system, they’re able to run more simulations concurrently, vastly improving turnaround time for design explorations. They’re also able to run much more refined simulations than they could with the 1.8 teraflop machine. On the old system only 10 percent of the aerodynamic design was done on the cluster, the remainder was accomplished with physical modeling in the wind tunnel. With the new system they’re aiming for a 50-50 split. “We’re currently running about three times the size of the model we were previously running,” said Glanfield. “Our option was to build a second wind tunnel, or to do this — to go for CFD in a really big way.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This