The Search for Stable Storage

By Leo Williams

November 19, 2008

A team led by Thomas Schulthess of Oak Ridge National Laboratory (ORNL) has broken the petaflop barrier with a supercomputing application likely to accelerate the revolution in magnetic storage.

Using ORNL’s upgraded Cray XT Jaguar supercomputer, the team was able to achieve a sustained performance of 1.05 quadrillion calculations a second, or 1.05 petaflops, for an application that simulates the behavior of electron systems. Jaguar itself was recently upgraded to a peak performance of 1.64 petaflops, making it the world’s first petaflop system dedicated to open scientific research. The team’s simulation ran on nearly 150,000 of Jaguar’s 180,000-plus processing cores.

Among its benefits, the application promises to advance scientific understanding of magnetic devices such as computer hard drives. In the last couple of decades, hard drive storage capacity has grown at an extraordinary rate. The associated risk, though, is that with increasing storage density, these amazing devices tend to become less stable.

Hard drives hold information by magnetizing tiny regions of a platter, with regions magnetized in one direction counting as ones and in the opposite direction as zeroes. With the exponential growth of storage capacity, these miniscule spots have gotten progressively even smaller; and the smaller the spot, the more likely its magnetic direction is to be incorrectly and unexpectedly reversed. Since disorder at the atomic scale increases with temperature, a hard drive kept as warm as room temperature becomes increasingly susceptible to random changes — meaning lost data — as storage density rises.

“A big problem in magnetic recording is that as you make the bits smaller and smaller, thermal excitation will essentially randomize them and you will lose information,” explained Markus Eisenbach of ORNL. “If that happens in 500 years you don’t care, but if it happens tomorrow you’re really unhappy.”

The team’s current approach differs fundamentally from earlier efforts because it is able to set aside empirical models and their attendant approximations to tackle the system through first-principles calculations. Eisenbach, who serves as the team’s developer for the project, noted that this empirical approach was far too computationally intensive for earlier computer systems.

“It’s the new Jaguar coming on line that makes it really feasible,” he said. “If you have a classical Heisenberg model, an energy calculation takes perhaps milliseconds. For this first-principles calculation, an energy calculation takes tens of seconds. So it’s orders of magnitude slower. You really need a computer of that size.”

The team simulates the effect of heat on a magnetic material by combining two methods. The first — known as locally self-consistent multiple scattering, or LSMS — describes the journeys of scattered electrons by applying density functional theory to solve the Dirac equation, a relativistic wave equation for electron behavior. The code has a robust history, having been the first code to run at a sustained trillion calculations per second and earned its developers the prestigious Gordon Bell Prize in 1998.

The shortcoming of this approach, though, is that it is used primarily to describe a system in its ground state at a temperature of absolute zero, or nearly 460°F. In order to include the energy brought to the system by temperatures outside a laboratory freezer, the team’s simulations incorporate a Monte Carlo method known as Wang-Landau, which guides the LSMS application to explore electron behavior at a variety of temperatures.

According to Eisenbach, the two methods are ideally suited to massively parallel computing systems. They scale linearly, meaning the need for computing resources grows at the same rate as the size of the system being simulated, and LSMS can be scaled to very large materials systems by assigning one atom to each processing core.

As a result, the team is able to use the petascale Jaguar system to simulate nanoparticles approaching technologically interesting sizes.

“We’re really getting to a size where you could do calculations for nanoparticles that are also the focus of experiment,” Eisenbach noted. “Experiments come from large systems and manage to get smaller and smaller, and we are coming from just a few atoms and getting to the point where experimentally accessible sizes and computationally accessible sizes meet.”

He would not predict what the project will find, since the team is taking a new approach to the problem. Nevertheless, he noted that hard drive manufacturers are watching this issue closely; as hard drive-capacity continues to grow, the importance of a more complete understanding of magnetic materials will also grow.

“The idea is to find materials that make it sufficiently hard for random temperature fluctuations to turn the bits around, so the information is still on your hard disk when you look at it next year. We have been talking with people at hard disk manufacturers. Certainly, it’s an important issue that gets discussed at magnetism conferences.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Share This