The Search for Stable Storage

By Leo Williams

November 19, 2008

A team led by Thomas Schulthess of Oak Ridge National Laboratory (ORNL) has broken the petaflop barrier with a supercomputing application likely to accelerate the revolution in magnetic storage.

Using ORNL’s upgraded Cray XT Jaguar supercomputer, the team was able to achieve a sustained performance of 1.05 quadrillion calculations a second, or 1.05 petaflops, for an application that simulates the behavior of electron systems. Jaguar itself was recently upgraded to a peak performance of 1.64 petaflops, making it the world’s first petaflop system dedicated to open scientific research. The team’s simulation ran on nearly 150,000 of Jaguar’s 180,000-plus processing cores.

Among its benefits, the application promises to advance scientific understanding of magnetic devices such as computer hard drives. In the last couple of decades, hard drive storage capacity has grown at an extraordinary rate. The associated risk, though, is that with increasing storage density, these amazing devices tend to become less stable.

Hard drives hold information by magnetizing tiny regions of a platter, with regions magnetized in one direction counting as ones and in the opposite direction as zeroes. With the exponential growth of storage capacity, these miniscule spots have gotten progressively even smaller; and the smaller the spot, the more likely its magnetic direction is to be incorrectly and unexpectedly reversed. Since disorder at the atomic scale increases with temperature, a hard drive kept as warm as room temperature becomes increasingly susceptible to random changes — meaning lost data — as storage density rises.

“A big problem in magnetic recording is that as you make the bits smaller and smaller, thermal excitation will essentially randomize them and you will lose information,” explained Markus Eisenbach of ORNL. “If that happens in 500 years you don’t care, but if it happens tomorrow you’re really unhappy.”

The team’s current approach differs fundamentally from earlier efforts because it is able to set aside empirical models and their attendant approximations to tackle the system through first-principles calculations. Eisenbach, who serves as the team’s developer for the project, noted that this empirical approach was far too computationally intensive for earlier computer systems.

“It’s the new Jaguar coming on line that makes it really feasible,” he said. “If you have a classical Heisenberg model, an energy calculation takes perhaps milliseconds. For this first-principles calculation, an energy calculation takes tens of seconds. So it’s orders of magnitude slower. You really need a computer of that size.”

The team simulates the effect of heat on a magnetic material by combining two methods. The first — known as locally self-consistent multiple scattering, or LSMS — describes the journeys of scattered electrons by applying density functional theory to solve the Dirac equation, a relativistic wave equation for electron behavior. The code has a robust history, having been the first code to run at a sustained trillion calculations per second and earned its developers the prestigious Gordon Bell Prize in 1998.

The shortcoming of this approach, though, is that it is used primarily to describe a system in its ground state at a temperature of absolute zero, or nearly 460°F. In order to include the energy brought to the system by temperatures outside a laboratory freezer, the team’s simulations incorporate a Monte Carlo method known as Wang-Landau, which guides the LSMS application to explore electron behavior at a variety of temperatures.

According to Eisenbach, the two methods are ideally suited to massively parallel computing systems. They scale linearly, meaning the need for computing resources grows at the same rate as the size of the system being simulated, and LSMS can be scaled to very large materials systems by assigning one atom to each processing core.

As a result, the team is able to use the petascale Jaguar system to simulate nanoparticles approaching technologically interesting sizes.

“We’re really getting to a size where you could do calculations for nanoparticles that are also the focus of experiment,” Eisenbach noted. “Experiments come from large systems and manage to get smaller and smaller, and we are coming from just a few atoms and getting to the point where experimentally accessible sizes and computationally accessible sizes meet.”

He would not predict what the project will find, since the team is taking a new approach to the problem. Nevertheless, he noted that hard drive manufacturers are watching this issue closely; as hard drive-capacity continues to grow, the importance of a more complete understanding of magnetic materials will also grow.

“The idea is to find materials that make it sufficiently hard for random temperature fluctuations to turn the bits around, so the information is still on your hard disk when you look at it next year. We have been talking with people at hard disk manufacturers. Certainly, it’s an important issue that gets discussed at magnetism conferences.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This