The Search for Stable Storage

By Leo Williams

November 19, 2008

A team led by Thomas Schulthess of Oak Ridge National Laboratory (ORNL) has broken the petaflop barrier with a supercomputing application likely to accelerate the revolution in magnetic storage.

Using ORNL’s upgraded Cray XT Jaguar supercomputer, the team was able to achieve a sustained performance of 1.05 quadrillion calculations a second, or 1.05 petaflops, for an application that simulates the behavior of electron systems. Jaguar itself was recently upgraded to a peak performance of 1.64 petaflops, making it the world’s first petaflop system dedicated to open scientific research. The team’s simulation ran on nearly 150,000 of Jaguar’s 180,000-plus processing cores.

Among its benefits, the application promises to advance scientific understanding of magnetic devices such as computer hard drives. In the last couple of decades, hard drive storage capacity has grown at an extraordinary rate. The associated risk, though, is that with increasing storage density, these amazing devices tend to become less stable.

Hard drives hold information by magnetizing tiny regions of a platter, with regions magnetized in one direction counting as ones and in the opposite direction as zeroes. With the exponential growth of storage capacity, these miniscule spots have gotten progressively even smaller; and the smaller the spot, the more likely its magnetic direction is to be incorrectly and unexpectedly reversed. Since disorder at the atomic scale increases with temperature, a hard drive kept as warm as room temperature becomes increasingly susceptible to random changes — meaning lost data — as storage density rises.

“A big problem in magnetic recording is that as you make the bits smaller and smaller, thermal excitation will essentially randomize them and you will lose information,” explained Markus Eisenbach of ORNL. “If that happens in 500 years you don’t care, but if it happens tomorrow you’re really unhappy.”

The team’s current approach differs fundamentally from earlier efforts because it is able to set aside empirical models and their attendant approximations to tackle the system through first-principles calculations. Eisenbach, who serves as the team’s developer for the project, noted that this empirical approach was far too computationally intensive for earlier computer systems.

“It’s the new Jaguar coming on line that makes it really feasible,” he said. “If you have a classical Heisenberg model, an energy calculation takes perhaps milliseconds. For this first-principles calculation, an energy calculation takes tens of seconds. So it’s orders of magnitude slower. You really need a computer of that size.”

The team simulates the effect of heat on a magnetic material by combining two methods. The first — known as locally self-consistent multiple scattering, or LSMS — describes the journeys of scattered electrons by applying density functional theory to solve the Dirac equation, a relativistic wave equation for electron behavior. The code has a robust history, having been the first code to run at a sustained trillion calculations per second and earned its developers the prestigious Gordon Bell Prize in 1998.

The shortcoming of this approach, though, is that it is used primarily to describe a system in its ground state at a temperature of absolute zero, or nearly 460°F. In order to include the energy brought to the system by temperatures outside a laboratory freezer, the team’s simulations incorporate a Monte Carlo method known as Wang-Landau, which guides the LSMS application to explore electron behavior at a variety of temperatures.

According to Eisenbach, the two methods are ideally suited to massively parallel computing systems. They scale linearly, meaning the need for computing resources grows at the same rate as the size of the system being simulated, and LSMS can be scaled to very large materials systems by assigning one atom to each processing core.

As a result, the team is able to use the petascale Jaguar system to simulate nanoparticles approaching technologically interesting sizes.

“We’re really getting to a size where you could do calculations for nanoparticles that are also the focus of experiment,” Eisenbach noted. “Experiments come from large systems and manage to get smaller and smaller, and we are coming from just a few atoms and getting to the point where experimentally accessible sizes and computationally accessible sizes meet.”

He would not predict what the project will find, since the team is taking a new approach to the problem. Nevertheless, he noted that hard drive manufacturers are watching this issue closely; as hard drive-capacity continues to grow, the importance of a more complete understanding of magnetic materials will also grow.

“The idea is to find materials that make it sufficiently hard for random temperature fluctuations to turn the bits around, so the information is still on your hard disk when you look at it next year. We have been talking with people at hard disk manufacturers. Certainly, it’s an important issue that gets discussed at magnetism conferences.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire