The Search for Stable Storage

By Leo Williams

November 19, 2008

A team led by Thomas Schulthess of Oak Ridge National Laboratory (ORNL) has broken the petaflop barrier with a supercomputing application likely to accelerate the revolution in magnetic storage.

Using ORNL’s upgraded Cray XT Jaguar supercomputer, the team was able to achieve a sustained performance of 1.05 quadrillion calculations a second, or 1.05 petaflops, for an application that simulates the behavior of electron systems. Jaguar itself was recently upgraded to a peak performance of 1.64 petaflops, making it the world’s first petaflop system dedicated to open scientific research. The team’s simulation ran on nearly 150,000 of Jaguar’s 180,000-plus processing cores.

Among its benefits, the application promises to advance scientific understanding of magnetic devices such as computer hard drives. In the last couple of decades, hard drive storage capacity has grown at an extraordinary rate. The associated risk, though, is that with increasing storage density, these amazing devices tend to become less stable.

Hard drives hold information by magnetizing tiny regions of a platter, with regions magnetized in one direction counting as ones and in the opposite direction as zeroes. With the exponential growth of storage capacity, these miniscule spots have gotten progressively even smaller; and the smaller the spot, the more likely its magnetic direction is to be incorrectly and unexpectedly reversed. Since disorder at the atomic scale increases with temperature, a hard drive kept as warm as room temperature becomes increasingly susceptible to random changes — meaning lost data — as storage density rises.

“A big problem in magnetic recording is that as you make the bits smaller and smaller, thermal excitation will essentially randomize them and you will lose information,” explained Markus Eisenbach of ORNL. “If that happens in 500 years you don’t care, but if it happens tomorrow you’re really unhappy.”

The team’s current approach differs fundamentally from earlier efforts because it is able to set aside empirical models and their attendant approximations to tackle the system through first-principles calculations. Eisenbach, who serves as the team’s developer for the project, noted that this empirical approach was far too computationally intensive for earlier computer systems.

“It’s the new Jaguar coming on line that makes it really feasible,” he said. “If you have a classical Heisenberg model, an energy calculation takes perhaps milliseconds. For this first-principles calculation, an energy calculation takes tens of seconds. So it’s orders of magnitude slower. You really need a computer of that size.”

The team simulates the effect of heat on a magnetic material by combining two methods. The first — known as locally self-consistent multiple scattering, or LSMS — describes the journeys of scattered electrons by applying density functional theory to solve the Dirac equation, a relativistic wave equation for electron behavior. The code has a robust history, having been the first code to run at a sustained trillion calculations per second and earned its developers the prestigious Gordon Bell Prize in 1998.

The shortcoming of this approach, though, is that it is used primarily to describe a system in its ground state at a temperature of absolute zero, or nearly 460°F. In order to include the energy brought to the system by temperatures outside a laboratory freezer, the team’s simulations incorporate a Monte Carlo method known as Wang-Landau, which guides the LSMS application to explore electron behavior at a variety of temperatures.

According to Eisenbach, the two methods are ideally suited to massively parallel computing systems. They scale linearly, meaning the need for computing resources grows at the same rate as the size of the system being simulated, and LSMS can be scaled to very large materials systems by assigning one atom to each processing core.

As a result, the team is able to use the petascale Jaguar system to simulate nanoparticles approaching technologically interesting sizes.

“We’re really getting to a size where you could do calculations for nanoparticles that are also the focus of experiment,” Eisenbach noted. “Experiments come from large systems and manage to get smaller and smaller, and we are coming from just a few atoms and getting to the point where experimentally accessible sizes and computationally accessible sizes meet.”

He would not predict what the project will find, since the team is taking a new approach to the problem. Nevertheless, he noted that hard drive manufacturers are watching this issue closely; as hard drive-capacity continues to grow, the importance of a more complete understanding of magnetic materials will also grow.

“The idea is to find materials that make it sufficiently hard for random temperature fluctuations to turn the bits around, so the information is still on your hard disk when you look at it next year. We have been talking with people at hard disk manufacturers. Certainly, it’s an important issue that gets discussed at magnetism conferences.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

‘Business Value’ of AI Heads Toward $4 Trillion

April 26, 2018

The rise of AI is reflected in recent market forecasts that predict it will help enterprises develop new products and services around applications like automated decision making. Market analyst Gartner Inc. forecasts Read more…

By George Leopold

Former AMD Chip Chief and ‘Zen’ Architect Jim Keller Joins Intel

April 26, 2018

Intel announced today it has hired top microprocessor architect Jim Keller as senior vice president to lead the company’s silicon engineering group, focusing on system-on-chip (SoC) development and integration. Read more…

By Tiffany Trader

Rackspace Is Latest to Roll Bare Metal Service

April 26, 2018

Rackspace is expanding its managed private cloud services with the addition of six new bare metal instances that it collectively refers to as bare metal as a service. The private cloud vendor announced the new managed Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This