Incoming: 10 Gigabit Ethernet for HPC

By Dan Tuchler

November 20, 2008

Sure, it’s proven, and a lot of people use it. But like many proprietary technologies, it also has some unappealing characteristics. It demands specialized expertise. It’s not always as fast as advertised. It’s not completely reliable. It certainly doesn’t work and play well with others. Yes, we are talking about InfiniBand.

InfiniBand has been a comfort zone for those tightly-coupled HPC applications that can’t live without their addiction to low latency and high speed. If your application is a science experiment with good funding and no firm schedule, that’s OK. If your application involves business, deadlines, and ROI, it’s time to break out of that comfort zone and acquaint yourself with 10 Gigabit Ethernet (10GE).

Fifty seven percent of the TOP500 Supercomputer Sites are already using Gigabit Ethernet interconnects. For many of those sites, that one Gigabit will give them all the speed they’ll ever need. For those applications that really do need a higher performance interconnect, 10GE can provide it — and a host of other advantages as well.

Technology You Know

InfiniBand might be the obvious choice in the HPC world, but compared to the well-known and widely-used Ethernet standard, the comfort level of InfiniBand might be equated to sleeping on a bed of nails. IT executives, network administrators, server vendors, and managed service providers around the world understand Ethernet. They can integrate and update an Ethernet installation within an existing infrastructure, without specialized gateways. They know how to manage it and how to benchmark it. They know what to do if something goes wrong. When it comes to Ethernet, familiarity breeds peace of mind.

More Cost-Effective and Already There

With costs going up, power at a premium, and manageability critical, it’s no surprise that converging and consolidating have become central themes in networking. Converged voice and data networks are becoming pervasive. Fibre Channel over Ethernet (FCoE) will merge storage and standard network applications on a common infrastructure. Virtualization is fast becoming a critical technology to support server and storage consolidation in the datacenter.

When it comes to reducing capital and operating expenses, one infrastructure is simply better than two — or more — and the HPC environment is no exception. High-performance computing clusters that use an InfiniBand interconnect also use Ethernet. Ethernet is necessary for user and storage connectivity, and for the management network that orchestrates the cluster. Replacing the InfiniBand interconnect with 10GE to create a single, all-inclusive infrastructure will cut hardware and power costs, and simplify manageability. And, that infrastructure combines high performance with low power needs and a sufficiently low latency for many HPC applications, making it an excellent fit for technical and budget requirements.

Prices are Plummeting

As with many technologies, 10GE was not initially cost-effective for widespread use. In fact, at one point a 10GE connection cost more than the server. But that ship has sailed. Now 10GE is so cost-effective that server vendors are starting to include the technology as a built-in standard feature. And switch prices are falling too. A number of switch vendors are offering 10 GE switches with a list price less than $500 per port.

Stable Network Interface

Some early adopters of 10GE were discouraged by problems with network interface cards (NICs). These problems were related to immature hardware and software drivers and have since been corrected. NIC vendors that could not adapt have dropped out of the market, and 10GE now has a stable network interface environment.

Physical Layer Selected

Many users expected that 10GBase-T would provide a simple, cost-effective solution, but were disappointed with the high cost, high power requirements and 2.6 µsec latency per cable hop. Multiple optics standards also led to some customer confusion, with XenPak, X2, XFP, and now SFP+.

It took a while for 10GE to converge on a single type of attachment, but many users today believe that SFP+ Direct Attach Cable (also known as twinax) is the right solution. SFP+ Direct Attach Cable is a low-cost, low-latency, interoperable solution that uses existing SFP+ sockets and addresses most 10GE challenges for distances up to around ten meters.

Broad Vendor Support

Every networking vendor supports Ethernet, and that support will extend to 40GE and 100GE in the future. Support for InfiniBand is limited to a handful of vendors. With less competition, there will be less innovation, and less incentive to offer competitive pricing and to increase reliability.

It’s Time

New products and advancing technologies have overcome the last hurdles that prevented 10GE from addressing HPC needs:

  • NIC prices will continue to drop as LAN-on-Motherboard (LOM) technology lets NIC vendors reach the high volumes they need to keep costs down.
  • Switch prices are also dropping–prices under $500 per port make 10GE switches cost-effective for business applications.
  • The emerging SFP+ Direct Attach cabling standard avoids the problem of expensive optics and presents a clear solution.
  • Many HPC applications such as Reuter’s RMDS and others achieve equivalent performance numbers on 10GbE and InfiniBand
  • Using some of the latest server blades and comparing DDR InfiniBand with RDMA to 10GE iWarp using a BLADE Network Technologies switch, we have observed similar performance on common HPC applications such as FLUENT, PAM CRASH, VASP and others.

It’s time to bring the benefits of ubiquitous 10GE to the HPC community. For most clusters and most applications, Ethernet brings the advantages of better pricing, higher reliability, plenty of performance, and lower operating costs than InfiniBand. A holistic approach with a single infrastructure will also contribute to reduced costs, while widespread Ethernet expertise will reduce management headaches and support a more efficient environment.

When InfiniBand is Necessary

Some applications will still require the extremely high performance and low latency that is achievable only with InfiniBand. However, IT teams should evaluate project needs carefully before selecting an interconnect technology. Situations that invite InfiniBand include:

The Need For Speed — Performance is a key driver for InfiniBand, but designers need to be aware of the bottom line for performance statistics. Double Data Rate (DDR) technology claims to provide 20 Gbps performance, but the reality is closer to 16 Gbps. Hardware limits in the PCIe gen1 bus in many machines reduce this number even further. With a measurable performance of about 13 Gbps, InfiniBand isn’t a whole lot faster than 10GE. Similarly, Quad Data Rate (QDR) claims 40 Gbps performance, but actually delivers closer to 26 Gbps due to the PCIe gen2 bus–not that much faster than a two-port 10GE switch.

Really Low Latency — Some compute-intensive, tightly-coupled applications, such as those found in the largest national science labs, do demand the extremely low latency that only InfiniBand can provide. However, other applications that are either loosely coupled or simply don’t have an excessive demand for low latency can run perfectly well over 10GE. Many TCP/IP-based applications fall into this category, and many more can be supported by adapters that offload TCP/IP processing. In fact, some TCP/IP applications actually run faster and with lower latency over 10GE than over InfiniBand.

About the Author

Dan Tuchler is Vice President of Strategy and Product Management at BLADE Network Technologies (www.bladenetwork.net). His technology experience spans emerging Ethernet standards, InfiniBand, security, load balancing, content-aware networking, and high-availability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This