Incoming: 10 Gigabit Ethernet for HPC

By Dan Tuchler

November 20, 2008

Sure, it’s proven, and a lot of people use it. But like many proprietary technologies, it also has some unappealing characteristics. It demands specialized expertise. It’s not always as fast as advertised. It’s not completely reliable. It certainly doesn’t work and play well with others. Yes, we are talking about InfiniBand.

InfiniBand has been a comfort zone for those tightly-coupled HPC applications that can’t live without their addiction to low latency and high speed. If your application is a science experiment with good funding and no firm schedule, that’s OK. If your application involves business, deadlines, and ROI, it’s time to break out of that comfort zone and acquaint yourself with 10 Gigabit Ethernet (10GE).

Fifty seven percent of the TOP500 Supercomputer Sites are already using Gigabit Ethernet interconnects. For many of those sites, that one Gigabit will give them all the speed they’ll ever need. For those applications that really do need a higher performance interconnect, 10GE can provide it — and a host of other advantages as well.

Technology You Know

InfiniBand might be the obvious choice in the HPC world, but compared to the well-known and widely-used Ethernet standard, the comfort level of InfiniBand might be equated to sleeping on a bed of nails. IT executives, network administrators, server vendors, and managed service providers around the world understand Ethernet. They can integrate and update an Ethernet installation within an existing infrastructure, without specialized gateways. They know how to manage it and how to benchmark it. They know what to do if something goes wrong. When it comes to Ethernet, familiarity breeds peace of mind.

More Cost-Effective and Already There

With costs going up, power at a premium, and manageability critical, it’s no surprise that converging and consolidating have become central themes in networking. Converged voice and data networks are becoming pervasive. Fibre Channel over Ethernet (FCoE) will merge storage and standard network applications on a common infrastructure. Virtualization is fast becoming a critical technology to support server and storage consolidation in the datacenter.

When it comes to reducing capital and operating expenses, one infrastructure is simply better than two — or more — and the HPC environment is no exception. High-performance computing clusters that use an InfiniBand interconnect also use Ethernet. Ethernet is necessary for user and storage connectivity, and for the management network that orchestrates the cluster. Replacing the InfiniBand interconnect with 10GE to create a single, all-inclusive infrastructure will cut hardware and power costs, and simplify manageability. And, that infrastructure combines high performance with low power needs and a sufficiently low latency for many HPC applications, making it an excellent fit for technical and budget requirements.

Prices are Plummeting

As with many technologies, 10GE was not initially cost-effective for widespread use. In fact, at one point a 10GE connection cost more than the server. But that ship has sailed. Now 10GE is so cost-effective that server vendors are starting to include the technology as a built-in standard feature. And switch prices are falling too. A number of switch vendors are offering 10 GE switches with a list price less than $500 per port.

Stable Network Interface

Some early adopters of 10GE were discouraged by problems with network interface cards (NICs). These problems were related to immature hardware and software drivers and have since been corrected. NIC vendors that could not adapt have dropped out of the market, and 10GE now has a stable network interface environment.

Physical Layer Selected

Many users expected that 10GBase-T would provide a simple, cost-effective solution, but were disappointed with the high cost, high power requirements and 2.6 µsec latency per cable hop. Multiple optics standards also led to some customer confusion, with XenPak, X2, XFP, and now SFP+.

It took a while for 10GE to converge on a single type of attachment, but many users today believe that SFP+ Direct Attach Cable (also known as twinax) is the right solution. SFP+ Direct Attach Cable is a low-cost, low-latency, interoperable solution that uses existing SFP+ sockets and addresses most 10GE challenges for distances up to around ten meters.

Broad Vendor Support

Every networking vendor supports Ethernet, and that support will extend to 40GE and 100GE in the future. Support for InfiniBand is limited to a handful of vendors. With less competition, there will be less innovation, and less incentive to offer competitive pricing and to increase reliability.

It’s Time

New products and advancing technologies have overcome the last hurdles that prevented 10GE from addressing HPC needs:

  • NIC prices will continue to drop as LAN-on-Motherboard (LOM) technology lets NIC vendors reach the high volumes they need to keep costs down.
  • Switch prices are also dropping–prices under $500 per port make 10GE switches cost-effective for business applications.
  • The emerging SFP+ Direct Attach cabling standard avoids the problem of expensive optics and presents a clear solution.
  • Many HPC applications such as Reuter’s RMDS and others achieve equivalent performance numbers on 10GbE and InfiniBand
  • Using some of the latest server blades and comparing DDR InfiniBand with RDMA to 10GE iWarp using a BLADE Network Technologies switch, we have observed similar performance on common HPC applications such as FLUENT, PAM CRASH, VASP and others.

It’s time to bring the benefits of ubiquitous 10GE to the HPC community. For most clusters and most applications, Ethernet brings the advantages of better pricing, higher reliability, plenty of performance, and lower operating costs than InfiniBand. A holistic approach with a single infrastructure will also contribute to reduced costs, while widespread Ethernet expertise will reduce management headaches and support a more efficient environment.

When InfiniBand is Necessary

Some applications will still require the extremely high performance and low latency that is achievable only with InfiniBand. However, IT teams should evaluate project needs carefully before selecting an interconnect technology. Situations that invite InfiniBand include:

The Need For Speed — Performance is a key driver for InfiniBand, but designers need to be aware of the bottom line for performance statistics. Double Data Rate (DDR) technology claims to provide 20 Gbps performance, but the reality is closer to 16 Gbps. Hardware limits in the PCIe gen1 bus in many machines reduce this number even further. With a measurable performance of about 13 Gbps, InfiniBand isn’t a whole lot faster than 10GE. Similarly, Quad Data Rate (QDR) claims 40 Gbps performance, but actually delivers closer to 26 Gbps due to the PCIe gen2 bus–not that much faster than a two-port 10GE switch.

Really Low Latency — Some compute-intensive, tightly-coupled applications, such as those found in the largest national science labs, do demand the extremely low latency that only InfiniBand can provide. However, other applications that are either loosely coupled or simply don’t have an excessive demand for low latency can run perfectly well over 10GE. Many TCP/IP-based applications fall into this category, and many more can be supported by adapters that offload TCP/IP processing. In fact, some TCP/IP applications actually run faster and with lower latency over 10GE than over InfiniBand.

About the Author

Dan Tuchler is Vice President of Strategy and Product Management at BLADE Network Technologies (www.bladenetwork.net). His technology experience spans emerging Ethernet standards, InfiniBand, security, load balancing, content-aware networking, and high-availability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This