Incoming: 10 Gigabit Ethernet for HPC

By Dan Tuchler

November 20, 2008

Sure, it’s proven, and a lot of people use it. But like many proprietary technologies, it also has some unappealing characteristics. It demands specialized expertise. It’s not always as fast as advertised. It’s not completely reliable. It certainly doesn’t work and play well with others. Yes, we are talking about InfiniBand.

InfiniBand has been a comfort zone for those tightly-coupled HPC applications that can’t live without their addiction to low latency and high speed. If your application is a science experiment with good funding and no firm schedule, that’s OK. If your application involves business, deadlines, and ROI, it’s time to break out of that comfort zone and acquaint yourself with 10 Gigabit Ethernet (10GE).

Fifty seven percent of the TOP500 Supercomputer Sites are already using Gigabit Ethernet interconnects. For many of those sites, that one Gigabit will give them all the speed they’ll ever need. For those applications that really do need a higher performance interconnect, 10GE can provide it — and a host of other advantages as well.

Technology You Know

InfiniBand might be the obvious choice in the HPC world, but compared to the well-known and widely-used Ethernet standard, the comfort level of InfiniBand might be equated to sleeping on a bed of nails. IT executives, network administrators, server vendors, and managed service providers around the world understand Ethernet. They can integrate and update an Ethernet installation within an existing infrastructure, without specialized gateways. They know how to manage it and how to benchmark it. They know what to do if something goes wrong. When it comes to Ethernet, familiarity breeds peace of mind.

More Cost-Effective and Already There

With costs going up, power at a premium, and manageability critical, it’s no surprise that converging and consolidating have become central themes in networking. Converged voice and data networks are becoming pervasive. Fibre Channel over Ethernet (FCoE) will merge storage and standard network applications on a common infrastructure. Virtualization is fast becoming a critical technology to support server and storage consolidation in the datacenter.

When it comes to reducing capital and operating expenses, one infrastructure is simply better than two — or more — and the HPC environment is no exception. High-performance computing clusters that use an InfiniBand interconnect also use Ethernet. Ethernet is necessary for user and storage connectivity, and for the management network that orchestrates the cluster. Replacing the InfiniBand interconnect with 10GE to create a single, all-inclusive infrastructure will cut hardware and power costs, and simplify manageability. And, that infrastructure combines high performance with low power needs and a sufficiently low latency for many HPC applications, making it an excellent fit for technical and budget requirements.

Prices are Plummeting

As with many technologies, 10GE was not initially cost-effective for widespread use. In fact, at one point a 10GE connection cost more than the server. But that ship has sailed. Now 10GE is so cost-effective that server vendors are starting to include the technology as a built-in standard feature. And switch prices are falling too. A number of switch vendors are offering 10 GE switches with a list price less than $500 per port.

Stable Network Interface

Some early adopters of 10GE were discouraged by problems with network interface cards (NICs). These problems were related to immature hardware and software drivers and have since been corrected. NIC vendors that could not adapt have dropped out of the market, and 10GE now has a stable network interface environment.

Physical Layer Selected

Many users expected that 10GBase-T would provide a simple, cost-effective solution, but were disappointed with the high cost, high power requirements and 2.6 µsec latency per cable hop. Multiple optics standards also led to some customer confusion, with XenPak, X2, XFP, and now SFP+.

It took a while for 10GE to converge on a single type of attachment, but many users today believe that SFP+ Direct Attach Cable (also known as twinax) is the right solution. SFP+ Direct Attach Cable is a low-cost, low-latency, interoperable solution that uses existing SFP+ sockets and addresses most 10GE challenges for distances up to around ten meters.

Broad Vendor Support

Every networking vendor supports Ethernet, and that support will extend to 40GE and 100GE in the future. Support for InfiniBand is limited to a handful of vendors. With less competition, there will be less innovation, and less incentive to offer competitive pricing and to increase reliability.

It’s Time

New products and advancing technologies have overcome the last hurdles that prevented 10GE from addressing HPC needs:

  • NIC prices will continue to drop as LAN-on-Motherboard (LOM) technology lets NIC vendors reach the high volumes they need to keep costs down.
  • Switch prices are also dropping–prices under $500 per port make 10GE switches cost-effective for business applications.
  • The emerging SFP+ Direct Attach cabling standard avoids the problem of expensive optics and presents a clear solution.
  • Many HPC applications such as Reuter’s RMDS and others achieve equivalent performance numbers on 10GbE and InfiniBand
  • Using some of the latest server blades and comparing DDR InfiniBand with RDMA to 10GE iWarp using a BLADE Network Technologies switch, we have observed similar performance on common HPC applications such as FLUENT, PAM CRASH, VASP and others.

It’s time to bring the benefits of ubiquitous 10GE to the HPC community. For most clusters and most applications, Ethernet brings the advantages of better pricing, higher reliability, plenty of performance, and lower operating costs than InfiniBand. A holistic approach with a single infrastructure will also contribute to reduced costs, while widespread Ethernet expertise will reduce management headaches and support a more efficient environment.

When InfiniBand is Necessary

Some applications will still require the extremely high performance and low latency that is achievable only with InfiniBand. However, IT teams should evaluate project needs carefully before selecting an interconnect technology. Situations that invite InfiniBand include:

The Need For Speed — Performance is a key driver for InfiniBand, but designers need to be aware of the bottom line for performance statistics. Double Data Rate (DDR) technology claims to provide 20 Gbps performance, but the reality is closer to 16 Gbps. Hardware limits in the PCIe gen1 bus in many machines reduce this number even further. With a measurable performance of about 13 Gbps, InfiniBand isn’t a whole lot faster than 10GE. Similarly, Quad Data Rate (QDR) claims 40 Gbps performance, but actually delivers closer to 26 Gbps due to the PCIe gen2 bus–not that much faster than a two-port 10GE switch.

Really Low Latency — Some compute-intensive, tightly-coupled applications, such as those found in the largest national science labs, do demand the extremely low latency that only InfiniBand can provide. However, other applications that are either loosely coupled or simply don’t have an excessive demand for low latency can run perfectly well over 10GE. Many TCP/IP-based applications fall into this category, and many more can be supported by adapters that offload TCP/IP processing. In fact, some TCP/IP applications actually run faster and with lower latency over 10GE than over InfiniBand.

About the Author

Dan Tuchler is Vice President of Strategy and Product Management at BLADE Network Technologies (www.bladenetwork.net). His technology experience spans emerging Ethernet standards, InfiniBand, security, load balancing, content-aware networking, and high-availability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This