Incoming: 10 Gigabit Ethernet for HPC

By Dan Tuchler

November 20, 2008

Sure, it’s proven, and a lot of people use it. But like many proprietary technologies, it also has some unappealing characteristics. It demands specialized expertise. It’s not always as fast as advertised. It’s not completely reliable. It certainly doesn’t work and play well with others. Yes, we are talking about InfiniBand.

InfiniBand has been a comfort zone for those tightly-coupled HPC applications that can’t live without their addiction to low latency and high speed. If your application is a science experiment with good funding and no firm schedule, that’s OK. If your application involves business, deadlines, and ROI, it’s time to break out of that comfort zone and acquaint yourself with 10 Gigabit Ethernet (10GE).

Fifty seven percent of the TOP500 Supercomputer Sites are already using Gigabit Ethernet interconnects. For many of those sites, that one Gigabit will give them all the speed they’ll ever need. For those applications that really do need a higher performance interconnect, 10GE can provide it — and a host of other advantages as well.

Technology You Know

InfiniBand might be the obvious choice in the HPC world, but compared to the well-known and widely-used Ethernet standard, the comfort level of InfiniBand might be equated to sleeping on a bed of nails. IT executives, network administrators, server vendors, and managed service providers around the world understand Ethernet. They can integrate and update an Ethernet installation within an existing infrastructure, without specialized gateways. They know how to manage it and how to benchmark it. They know what to do if something goes wrong. When it comes to Ethernet, familiarity breeds peace of mind.

More Cost-Effective and Already There

With costs going up, power at a premium, and manageability critical, it’s no surprise that converging and consolidating have become central themes in networking. Converged voice and data networks are becoming pervasive. Fibre Channel over Ethernet (FCoE) will merge storage and standard network applications on a common infrastructure. Virtualization is fast becoming a critical technology to support server and storage consolidation in the datacenter.

When it comes to reducing capital and operating expenses, one infrastructure is simply better than two — or more — and the HPC environment is no exception. High-performance computing clusters that use an InfiniBand interconnect also use Ethernet. Ethernet is necessary for user and storage connectivity, and for the management network that orchestrates the cluster. Replacing the InfiniBand interconnect with 10GE to create a single, all-inclusive infrastructure will cut hardware and power costs, and simplify manageability. And, that infrastructure combines high performance with low power needs and a sufficiently low latency for many HPC applications, making it an excellent fit for technical and budget requirements.

Prices are Plummeting

As with many technologies, 10GE was not initially cost-effective for widespread use. In fact, at one point a 10GE connection cost more than the server. But that ship has sailed. Now 10GE is so cost-effective that server vendors are starting to include the technology as a built-in standard feature. And switch prices are falling too. A number of switch vendors are offering 10 GE switches with a list price less than $500 per port.

Stable Network Interface

Some early adopters of 10GE were discouraged by problems with network interface cards (NICs). These problems were related to immature hardware and software drivers and have since been corrected. NIC vendors that could not adapt have dropped out of the market, and 10GE now has a stable network interface environment.

Physical Layer Selected

Many users expected that 10GBase-T would provide a simple, cost-effective solution, but were disappointed with the high cost, high power requirements and 2.6 µsec latency per cable hop. Multiple optics standards also led to some customer confusion, with XenPak, X2, XFP, and now SFP+.

It took a while for 10GE to converge on a single type of attachment, but many users today believe that SFP+ Direct Attach Cable (also known as twinax) is the right solution. SFP+ Direct Attach Cable is a low-cost, low-latency, interoperable solution that uses existing SFP+ sockets and addresses most 10GE challenges for distances up to around ten meters.

Broad Vendor Support

Every networking vendor supports Ethernet, and that support will extend to 40GE and 100GE in the future. Support for InfiniBand is limited to a handful of vendors. With less competition, there will be less innovation, and less incentive to offer competitive pricing and to increase reliability.

It’s Time

New products and advancing technologies have overcome the last hurdles that prevented 10GE from addressing HPC needs:

  • NIC prices will continue to drop as LAN-on-Motherboard (LOM) technology lets NIC vendors reach the high volumes they need to keep costs down.
  • Switch prices are also dropping–prices under $500 per port make 10GE switches cost-effective for business applications.
  • The emerging SFP+ Direct Attach cabling standard avoids the problem of expensive optics and presents a clear solution.
  • Many HPC applications such as Reuter’s RMDS and others achieve equivalent performance numbers on 10GbE and InfiniBand
  • Using some of the latest server blades and comparing DDR InfiniBand with RDMA to 10GE iWarp using a BLADE Network Technologies switch, we have observed similar performance on common HPC applications such as FLUENT, PAM CRASH, VASP and others.

It’s time to bring the benefits of ubiquitous 10GE to the HPC community. For most clusters and most applications, Ethernet brings the advantages of better pricing, higher reliability, plenty of performance, and lower operating costs than InfiniBand. A holistic approach with a single infrastructure will also contribute to reduced costs, while widespread Ethernet expertise will reduce management headaches and support a more efficient environment.

When InfiniBand is Necessary

Some applications will still require the extremely high performance and low latency that is achievable only with InfiniBand. However, IT teams should evaluate project needs carefully before selecting an interconnect technology. Situations that invite InfiniBand include:

The Need For Speed — Performance is a key driver for InfiniBand, but designers need to be aware of the bottom line for performance statistics. Double Data Rate (DDR) technology claims to provide 20 Gbps performance, but the reality is closer to 16 Gbps. Hardware limits in the PCIe gen1 bus in many machines reduce this number even further. With a measurable performance of about 13 Gbps, InfiniBand isn’t a whole lot faster than 10GE. Similarly, Quad Data Rate (QDR) claims 40 Gbps performance, but actually delivers closer to 26 Gbps due to the PCIe gen2 bus–not that much faster than a two-port 10GE switch.

Really Low Latency — Some compute-intensive, tightly-coupled applications, such as those found in the largest national science labs, do demand the extremely low latency that only InfiniBand can provide. However, other applications that are either loosely coupled or simply don’t have an excessive demand for low latency can run perfectly well over 10GE. Many TCP/IP-based applications fall into this category, and many more can be supported by adapters that offload TCP/IP processing. In fact, some TCP/IP applications actually run faster and with lower latency over 10GE than over InfiniBand.

About the Author

Dan Tuchler is Vice President of Strategy and Product Management at BLADE Network Technologies (www.bladenetwork.net). His technology experience spans emerging Ethernet standards, InfiniBand, security, load balancing, content-aware networking, and high-availability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire