HPC Clouds — Alto Cirrus or Cumulonimbus

By Thomas Sterling and Dylan Stark

November 21, 2008

The “cloud” model of exporting user workload and services to remote, distributed and virtual environments is emerging as a powerful paradigm for improving efficiency of client and server operations, enhancing quality of service, and enabling early access to unprecedented resources for many small enterprises. From single users to major commercial organizations, cloud computing is finding numerous niche opportunities, often by simplifying rapid availability of new capabilities, with minimum time to deployment and return on requirements. Yet, one domain that challenges this model in its characteristics and needs is high performance computing (HPC).

The unique demands and decades’ long experiences of HPC on the one hand hunger for the level of service that clouds promise while on the other hand impose stringent properties, at least in some cases, that may be beyond the potential of this otherwise remarkable trend. The question is, can cloud computing reach the ethereal heights of Alto Cirrus for HPC, or will it inflict the damaging thunderclap of cumulonimbus?

While HPC immediately invokes images of TOP500 machines, the petaflops performance regime, and applications that boldly compute where no machine has calculated before, in truth this domain is multivariate with many distinct class of demand. The potential role and impact of cloud computing to HPC must be viewed across the range of disparate uses embodied by the HPC community. One possible delineation of the field (in order of most stringent first) is:

  1. Highest possible delivered capability performance (strong scaling).
  2. Weak scaling single applications.
  3. Capacity, or throughput job-stream, computing.
  4. Management of massive data sets, possibly geographically distributed.
  5. Analysis and visualization of data sets.
  6. Management and administrative workloads supporting the HPC community.

Consideration of these distinct workflows exposes opportunities for the potential exploitation of the cloud model and the benefits this might convey. Starting from the bottom of the list, the HPC community involves many everyday data processing requirements that are similar to any business or academic institution. Already some of the general infrastructure needs are quietly being outsourced to cloud-like services including databases, email, web-management, information retrieval and distribution, and other routine but critical functions. However, many of these tasks can be provided by the local set of distributed workstation and small enterprise servers. Therefore the real benefit is in reducing cost of software maintenance and per head cost of software licenses, rather than reduction of cost of hardware facilities.

Offloading tasks directly associated with doing computational science, such as data analysis and visualization, are appropriate to the use of cloud services in certain cases. This is particularly true for smaller organizations that do not have the full set of software systems that are appropriate to the local requirements. Occasionally, availability of mid-scale hardware resources, such as enterprise servers, may be useful as well if queue times do not impede fast turnaround. This domain can be expanded to include the frequent introduction of new or upgraded software packages not readily available at the local site, even if open source. Where such software is provided by ISVs, the cost of ownership or licensing may exceed the budget or even the need of occasional use.

Offerings by cloud providers may find preferable incentives for use of such software. It also removes the need for local expertise in installing, tuning, and maintaining such arcane packages. This is particularly true for small groups or individual researchers. However, a recurring theme is that HPC users tend to be in environments that incorporate high levels of expertise including motivated students and young researchers, and therefore are more likely to have access to such capabilities. The use of clouds in this case will be determined by the peculiarities of the individual and his/her situation.

Although HPC is often equated to FLOPS, it is as dependent, even sometimes more so, on bytes. Much science is data oriented, comprising data acquisition, product generation, organization, correlation, archiving, mining, and presentation. Massive data sets, especially those that are intrinsically distributed among many sites are a particularly rich target for cloud services. Maintenance of large tertiary storage facilities is particularly difficult and expensive, even for the most facilities rich environments. Data management is one area of HPC in which commercial enterprises are significantly advanced, even with respect to scientific computing expertise, with significant commercial investment being applied compared to the rarified boutique scientific computing community.

One very important factor is that confidence in data integrity of large archives may ultimately be higher among cloud resource suppliers both because of their potentially distributed nature removes issues of single point failure (like hurricanes, lightening strikes, floods), and their ability to exploit substantial investments available due to economy of scale. But one, perhaps insurmountable, challenge may impose fundamental limits in the use of clouds for data storage for some mission-critical HPC user agencies and commercial research institutions: data security. Where the potential damage for leakage or corruption of data would be strategic in nature for national security or intellectual property protection, it may be implausible that such data, no matter what the quantity or putative guarantees, will be trusted to remote and sometimes unspecified service entities.

Throughput computing is an area of strong promise for HPC in the exploitation of the emerging cloud systems. Cloud services are particularly well suited for the provisioning of resources to handle application loads of many sequential or slightly parallel (everything will have to become multicore) application tasks limited to size-constrained SMP units, such as for moderate duration parametric studies. In this case, cloud services have the potential to greatly enhance an HPC institution’s available resources and operational flexibility while improving efficiency and reducing overall cost of equipment and maintenance personnel. By offloading throughput computing workloads to cloud resources, HPC investments may be better applied to those resources unique to the needs of STEM applications not adequately served by the widely-available cloud-class processing services. However, this is tempered by the important constraint discussed above related to workloads that are security or IP sensitive.

The final two regimes of the HPC scientific and technical computing arena prove more problematic for clouds. Although weak scaling applications, where the problem size grows with the system scale such that granularity of concurrency remains approximately constant, may be suitable for a subset of the class of machines available within a cloud, the virtualization demanded by the cloud environment will preclude the hardware-specific performance tuning essential to effective HPC application execution. Virtualization is an important means of achieving user productivity, but as yet it is not a path to optimal performance, especially for high scale supercomputer grade commodity clusters (e.g., Beowulf) and MPPs (e.g., Cray XT3/4/5 and IBM BG/L/P/Q). And, while auto-tuning (as part of an autonomic framework) may one day offer a path to scalable performance, current practices at this time by users of major applications demand hands-on access to the detailed specifics of the physical machine.

Where the HPC community is already plagued with sometimes single-digit efficiencies for highly-tuned codes that may run for weeks or months to completion, the loss of substantially more performance to virtualization is untenable in many cases. An additional challenge relates to I/O bandwidth, which is sometimes a serious bottleneck if not balanced with the application needs that cannot be ensured by the abstraction of the cloud. Also, the problem of checkpoint and restart is critical to major application runs but may not be a robust service incorporated as part of most cloud systems. Therefore, a suitable system would need to make appropriate guarantees with respect to the availability of hardware and software configurations that would not be representative of the broad class of clouds.

Finally, the most challenging aspect of HPC is the constantly advancing architecture and application of capability computing systems. In their most pure form they enable strong scaling where response time is reduced for fixed sized applications with increasing system scale. Such systems imply a premium cost not just because of their mammoth size comprising upwards of a million cores and tens of terabytes of main memory, but also because of their unique design and limited market, which results in the loss of economy of scale. Even when integrating many commodity devices such as microprocessors and DRAM components, the cost of such systems may be tens of millions to over a hundred million dollars.

With the very high bandwidth, low latency internal networks with specialized functionality (e.g., combining networks) and high bandwidth storage area networks for attached secondary storage, there are few commercial user domains that can help offset the NRE costs of such major and optimized computing systems. It is unlikely that a business model can be constructed that would justify such systems being made available through cloud economics. Added to this are the same issues with virtualization versus performance optimization through hands-on performance tuning as described above. Therefore, it is unlikely that clouds will satisfy capability computing challenges for computational science in the foreseeable future.

The evolution of the cloud paradigm is an important maturing of the power of microelectronics, distributed computing, the Internet, and the rapidly expanding role of computing in all aspects of human enterprise and social context. The HPC and scientific computing community will benefit in tangential ways from the cloud environments as they evolve and where appropriate. However, challenges of virtualization and performance optimization, security and intellectual property protection, and unique requirements of scale and functionality, will result in certain critical aspects of the requirements of HPC falling outside the domain of cloud computing, relying instead on the strong foundation upon which HPC is well grounded.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This