HPC Clouds — Alto Cirrus or Cumulonimbus

By Thomas Sterling and Dylan Stark

November 21, 2008

The “cloud” model of exporting user workload and services to remote, distributed and virtual environments is emerging as a powerful paradigm for improving efficiency of client and server operations, enhancing quality of service, and enabling early access to unprecedented resources for many small enterprises. From single users to major commercial organizations, cloud computing is finding numerous niche opportunities, often by simplifying rapid availability of new capabilities, with minimum time to deployment and return on requirements. Yet, one domain that challenges this model in its characteristics and needs is high performance computing (HPC).

The unique demands and decades’ long experiences of HPC on the one hand hunger for the level of service that clouds promise while on the other hand impose stringent properties, at least in some cases, that may be beyond the potential of this otherwise remarkable trend. The question is, can cloud computing reach the ethereal heights of Alto Cirrus for HPC, or will it inflict the damaging thunderclap of cumulonimbus?

While HPC immediately invokes images of TOP500 machines, the petaflops performance regime, and applications that boldly compute where no machine has calculated before, in truth this domain is multivariate with many distinct class of demand. The potential role and impact of cloud computing to HPC must be viewed across the range of disparate uses embodied by the HPC community. One possible delineation of the field (in order of most stringent first) is:

  1. Highest possible delivered capability performance (strong scaling).
  2. Weak scaling single applications.
  3. Capacity, or throughput job-stream, computing.
  4. Management of massive data sets, possibly geographically distributed.
  5. Analysis and visualization of data sets.
  6. Management and administrative workloads supporting the HPC community.

Consideration of these distinct workflows exposes opportunities for the potential exploitation of the cloud model and the benefits this might convey. Starting from the bottom of the list, the HPC community involves many everyday data processing requirements that are similar to any business or academic institution. Already some of the general infrastructure needs are quietly being outsourced to cloud-like services including databases, email, web-management, information retrieval and distribution, and other routine but critical functions. However, many of these tasks can be provided by the local set of distributed workstation and small enterprise servers. Therefore the real benefit is in reducing cost of software maintenance and per head cost of software licenses, rather than reduction of cost of hardware facilities.

Offloading tasks directly associated with doing computational science, such as data analysis and visualization, are appropriate to the use of cloud services in certain cases. This is particularly true for smaller organizations that do not have the full set of software systems that are appropriate to the local requirements. Occasionally, availability of mid-scale hardware resources, such as enterprise servers, may be useful as well if queue times do not impede fast turnaround. This domain can be expanded to include the frequent introduction of new or upgraded software packages not readily available at the local site, even if open source. Where such software is provided by ISVs, the cost of ownership or licensing may exceed the budget or even the need of occasional use.

Offerings by cloud providers may find preferable incentives for use of such software. It also removes the need for local expertise in installing, tuning, and maintaining such arcane packages. This is particularly true for small groups or individual researchers. However, a recurring theme is that HPC users tend to be in environments that incorporate high levels of expertise including motivated students and young researchers, and therefore are more likely to have access to such capabilities. The use of clouds in this case will be determined by the peculiarities of the individual and his/her situation.

Although HPC is often equated to FLOPS, it is as dependent, even sometimes more so, on bytes. Much science is data oriented, comprising data acquisition, product generation, organization, correlation, archiving, mining, and presentation. Massive data sets, especially those that are intrinsically distributed among many sites are a particularly rich target for cloud services. Maintenance of large tertiary storage facilities is particularly difficult and expensive, even for the most facilities rich environments. Data management is one area of HPC in which commercial enterprises are significantly advanced, even with respect to scientific computing expertise, with significant commercial investment being applied compared to the rarified boutique scientific computing community.

One very important factor is that confidence in data integrity of large archives may ultimately be higher among cloud resource suppliers both because of their potentially distributed nature removes issues of single point failure (like hurricanes, lightening strikes, floods), and their ability to exploit substantial investments available due to economy of scale. But one, perhaps insurmountable, challenge may impose fundamental limits in the use of clouds for data storage for some mission-critical HPC user agencies and commercial research institutions: data security. Where the potential damage for leakage or corruption of data would be strategic in nature for national security or intellectual property protection, it may be implausible that such data, no matter what the quantity or putative guarantees, will be trusted to remote and sometimes unspecified service entities.

Throughput computing is an area of strong promise for HPC in the exploitation of the emerging cloud systems. Cloud services are particularly well suited for the provisioning of resources to handle application loads of many sequential or slightly parallel (everything will have to become multicore) application tasks limited to size-constrained SMP units, such as for moderate duration parametric studies. In this case, cloud services have the potential to greatly enhance an HPC institution’s available resources and operational flexibility while improving efficiency and reducing overall cost of equipment and maintenance personnel. By offloading throughput computing workloads to cloud resources, HPC investments may be better applied to those resources unique to the needs of STEM applications not adequately served by the widely-available cloud-class processing services. However, this is tempered by the important constraint discussed above related to workloads that are security or IP sensitive.

The final two regimes of the HPC scientific and technical computing arena prove more problematic for clouds. Although weak scaling applications, where the problem size grows with the system scale such that granularity of concurrency remains approximately constant, may be suitable for a subset of the class of machines available within a cloud, the virtualization demanded by the cloud environment will preclude the hardware-specific performance tuning essential to effective HPC application execution. Virtualization is an important means of achieving user productivity, but as yet it is not a path to optimal performance, especially for high scale supercomputer grade commodity clusters (e.g., Beowulf) and MPPs (e.g., Cray XT3/4/5 and IBM BG/L/P/Q). And, while auto-tuning (as part of an autonomic framework) may one day offer a path to scalable performance, current practices at this time by users of major applications demand hands-on access to the detailed specifics of the physical machine.

Where the HPC community is already plagued with sometimes single-digit efficiencies for highly-tuned codes that may run for weeks or months to completion, the loss of substantially more performance to virtualization is untenable in many cases. An additional challenge relates to I/O bandwidth, which is sometimes a serious bottleneck if not balanced with the application needs that cannot be ensured by the abstraction of the cloud. Also, the problem of checkpoint and restart is critical to major application runs but may not be a robust service incorporated as part of most cloud systems. Therefore, a suitable system would need to make appropriate guarantees with respect to the availability of hardware and software configurations that would not be representative of the broad class of clouds.

Finally, the most challenging aspect of HPC is the constantly advancing architecture and application of capability computing systems. In their most pure form they enable strong scaling where response time is reduced for fixed sized applications with increasing system scale. Such systems imply a premium cost not just because of their mammoth size comprising upwards of a million cores and tens of terabytes of main memory, but also because of their unique design and limited market, which results in the loss of economy of scale. Even when integrating many commodity devices such as microprocessors and DRAM components, the cost of such systems may be tens of millions to over a hundred million dollars.

With the very high bandwidth, low latency internal networks with specialized functionality (e.g., combining networks) and high bandwidth storage area networks for attached secondary storage, there are few commercial user domains that can help offset the NRE costs of such major and optimized computing systems. It is unlikely that a business model can be constructed that would justify such systems being made available through cloud economics. Added to this are the same issues with virtualization versus performance optimization through hands-on performance tuning as described above. Therefore, it is unlikely that clouds will satisfy capability computing challenges for computational science in the foreseeable future.

The evolution of the cloud paradigm is an important maturing of the power of microelectronics, distributed computing, the Internet, and the rapidly expanding role of computing in all aspects of human enterprise and social context. The HPC and scientific computing community will benefit in tangential ways from the cloud environments as they evolve and where appropriate. However, challenges of virtualization and performance optimization, security and intellectual property protection, and unique requirements of scale and functionality, will result in certain critical aspects of the requirements of HPC falling outside the domain of cloud computing, relying instead on the strong foundation upon which HPC is well grounded.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire