OpenCL Update

By Michael D. McCool and Stefanus Du Toit

November 21, 2008

OpenCL (the Open Computing Language) is under development by the Khronos Group as an open, royalty-free standard for parallel programming of heterogeneous systems. It provides a common hardware abstraction layer to expose the computational capabilities of systems that include a diverse mix of multicore CPUs, GPUs and other parallel processors such as DSPs and the Cell, for use in accelerating a variety of compute-intensive applications. The intent of the OpenCL initiative is to provide a common foundational layer for other technologies to build upon. The OpenCL standard will also have the effect of coordinating the basic capabilities of target processors. In particular, in order to be conformant with OpenCL, processors will have to meet minimum capability, resource and precision requirements. This article reviews the organizations and process behind the OpenCL standard proposal, gives a brief overview of the nature of the proposal itself, and then discusses the implications of OpenCL for the high-performance software development community.

The Khronos organization supports the collaborative development and maintenance of several royalty-free open standards, including OpenGL, OpenGL ES, COLLADA, and OpenMAX. OpenCL is not yet ratified, but the member companies involved have already arrived at a draft specification of version 1.0, which is currently under review. The OpenCL effort was initiated by Apple, and the development of the draft specification has included the active involvement of AMD, ARM, Barco, Codeplay, Electronic Arts, Ericsson, Freescale, Imagination Technologies, IBM, Intel, Motorola, Movidia, Nokia, NVIDIA, RapidMind, and Texas Instruments.

The OpenCL specification consists of three main components: a platform API, a language for specifying computational kernels, and a runtime API. The platform API allows a developer to query a given OpenCL implementation to determine the capabilities of the devices that particular implementation supports. Once a device has been selected and a context created, the runtime API can be used to queue and manage computational and memory operations for that device. OpenCL manages and coordinates such operations using an asynchronous command queue. OpenCL command queues can include computational kernels as well as memory transfer and map/unmap operations. Asynchronous memory operations are included in order to efficiently support the separate address spaces and DMA engines used by many accelerators.

The parallel execution model of OpenCL is based on the execution of an array of functions over an abstract index space. The abstract index spaces driving parallel execution consists of n-tuples of integers with each element starting at 0. For instance, 16 parallel units of work could be associated with an index space from 0 to 15. Alternatively, using 2-tuples, those 16 units of work could be associated with (0,0) to (3,3). Three-dimensional index spaces are also supported. Computational kernels invoked over these index spaces are based on functions drawn from programs specified in OpenCL C. OpenCL C is a subset of C99 with extensions for parallelism. These extensions include support for vector types, images and built-in functions to read and write images, and memory hierarchy qualifiers for local, global, constant, and private memory spaces. The OpenCL C language also currently includes some restrictions relative to C99, particularly with regards to dynamic memory allocation, function pointers, writes to byte addresses, irreducible control flow, and recursion. Programs written in OpenCL C can either be compiled at runtime or in advance. However, OpenCL C programs compiled in advance may only work on specific hardware devices.

Each instance of a kernel is able to query its index, and then do different work and access different data based on that index. The index space defines the “parallel shape” of the work, but it is up to the kernel to decide how the abstract index will translate into data access and computation. For example, to add two arrays and place the sum in an a third output array, a kernel might access its global index, from this index compute an address in each of two input arrays, read from these arrays, perform the addition, compute the address of its result in an output array, and write the result.

A hierarchical memory model is also supported. In this model, the index space is divided into work groups. Each work-item in a work-group, in addition to accessing its own private memory, can share a local memory during the execution of the work-group. This can be used to support one additional level of hierarchical data parallelism, which is useful to capture data locality in applications such as video/image compression and matrix multiplication. However, different work-groups cannot communicate or synchronize with one another, although work items within a work-group can synchronize using barriers and communicate using local memory (if supported on a particular device). There is an extension for atomic memory operations but it is optional (for now).

OpenCL uses a relaxed memory consistency model where the local view of memory from each kernel is only guaranteed to be consistent after specified synchronization points. Synchronization points include barriers within kernels (which can only be used to synchronize the view of local memory between elements of a work-group), and queue “events.” Event dependencies can be used to synchronize commands on the work queue. Dependencies between commands come in two forms: implicit and explicit. Command queues in OpenCL can run in two modes: in-order and out-of-order. In an in-order queue, commands are implicitly ordered by their position in the queue, and the result of execution must be consistent with this order. In the out-of-order mode, OpenCL is free to run some of the commands in the queue in parallel. However, the order can be constrained explicitly by specifying event lists for each command when it is enqueued. This will cause some commands to wait until the specified events have completed. Events can be based on the completion of memory transfer operations and explicit barriers as well as kernel invocations. All commands return an event handle which can be added to a list of dependencies for commands enqueued later.

In addition to encouraging standardization between the basic capabilities of different high-performance processors, OpenCL will have a few other interesting effects. One of these will be to open up the embedded and handheld spaces to accelerated computing. OpenCL supports an embedded profile that differs primarily from the full OpenCL profile in resource limits and precision requirements. This means that it will be possible to use OpenCL to access the computational power of embedded multicore processors, including embedded GPUs, in mobile phones and set-top boxes in order to enable high-performance imaging, vision, game physics, and other applications. Applications, libraries, middleware and high-level languages based on OpenCL will be able to access the computational power of these devices.

In summary, OpenCL is an open, royalty-free standard that will enable portable, parallel programming of heterogeneous CPUs, GPUs and other processors. OpenCL is designed as a foundational layer for low-level access to hardware and also establishes a level of consistency between high-performance processors. This will give high-performance application and library writers, as well as high-level language, platform, and middleware developers, the ability to focus on higher-level concerns rather than dealing with variant semantics and syntax for the same concepts from different vendors. OpenCL will allow library, application and middleware developers to focus their efforts on providing greater functionality, rather than redeveloping code or lower-level interfaces to each new processor and accelerator.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire