OpenCL Update

By Michael D. McCool and Stefanus Du Toit

November 21, 2008

OpenCL (the Open Computing Language) is under development by the Khronos Group as an open, royalty-free standard for parallel programming of heterogeneous systems. It provides a common hardware abstraction layer to expose the computational capabilities of systems that include a diverse mix of multicore CPUs, GPUs and other parallel processors such as DSPs and the Cell, for use in accelerating a variety of compute-intensive applications. The intent of the OpenCL initiative is to provide a common foundational layer for other technologies to build upon. The OpenCL standard will also have the effect of coordinating the basic capabilities of target processors. In particular, in order to be conformant with OpenCL, processors will have to meet minimum capability, resource and precision requirements. This article reviews the organizations and process behind the OpenCL standard proposal, gives a brief overview of the nature of the proposal itself, and then discusses the implications of OpenCL for the high-performance software development community.

The Khronos organization supports the collaborative development and maintenance of several royalty-free open standards, including OpenGL, OpenGL ES, COLLADA, and OpenMAX. OpenCL is not yet ratified, but the member companies involved have already arrived at a draft specification of version 1.0, which is currently under review. The OpenCL effort was initiated by Apple, and the development of the draft specification has included the active involvement of AMD, ARM, Barco, Codeplay, Electronic Arts, Ericsson, Freescale, Imagination Technologies, IBM, Intel, Motorola, Movidia, Nokia, NVIDIA, RapidMind, and Texas Instruments.

The OpenCL specification consists of three main components: a platform API, a language for specifying computational kernels, and a runtime API. The platform API allows a developer to query a given OpenCL implementation to determine the capabilities of the devices that particular implementation supports. Once a device has been selected and a context created, the runtime API can be used to queue and manage computational and memory operations for that device. OpenCL manages and coordinates such operations using an asynchronous command queue. OpenCL command queues can include computational kernels as well as memory transfer and map/unmap operations. Asynchronous memory operations are included in order to efficiently support the separate address spaces and DMA engines used by many accelerators.

The parallel execution model of OpenCL is based on the execution of an array of functions over an abstract index space. The abstract index spaces driving parallel execution consists of n-tuples of integers with each element starting at 0. For instance, 16 parallel units of work could be associated with an index space from 0 to 15. Alternatively, using 2-tuples, those 16 units of work could be associated with (0,0) to (3,3). Three-dimensional index spaces are also supported. Computational kernels invoked over these index spaces are based on functions drawn from programs specified in OpenCL C. OpenCL C is a subset of C99 with extensions for parallelism. These extensions include support for vector types, images and built-in functions to read and write images, and memory hierarchy qualifiers for local, global, constant, and private memory spaces. The OpenCL C language also currently includes some restrictions relative to C99, particularly with regards to dynamic memory allocation, function pointers, writes to byte addresses, irreducible control flow, and recursion. Programs written in OpenCL C can either be compiled at runtime or in advance. However, OpenCL C programs compiled in advance may only work on specific hardware devices.

Each instance of a kernel is able to query its index, and then do different work and access different data based on that index. The index space defines the “parallel shape” of the work, but it is up to the kernel to decide how the abstract index will translate into data access and computation. For example, to add two arrays and place the sum in an a third output array, a kernel might access its global index, from this index compute an address in each of two input arrays, read from these arrays, perform the addition, compute the address of its result in an output array, and write the result.

A hierarchical memory model is also supported. In this model, the index space is divided into work groups. Each work-item in a work-group, in addition to accessing its own private memory, can share a local memory during the execution of the work-group. This can be used to support one additional level of hierarchical data parallelism, which is useful to capture data locality in applications such as video/image compression and matrix multiplication. However, different work-groups cannot communicate or synchronize with one another, although work items within a work-group can synchronize using barriers and communicate using local memory (if supported on a particular device). There is an extension for atomic memory operations but it is optional (for now).

OpenCL uses a relaxed memory consistency model where the local view of memory from each kernel is only guaranteed to be consistent after specified synchronization points. Synchronization points include barriers within kernels (which can only be used to synchronize the view of local memory between elements of a work-group), and queue “events.” Event dependencies can be used to synchronize commands on the work queue. Dependencies between commands come in two forms: implicit and explicit. Command queues in OpenCL can run in two modes: in-order and out-of-order. In an in-order queue, commands are implicitly ordered by their position in the queue, and the result of execution must be consistent with this order. In the out-of-order mode, OpenCL is free to run some of the commands in the queue in parallel. However, the order can be constrained explicitly by specifying event lists for each command when it is enqueued. This will cause some commands to wait until the specified events have completed. Events can be based on the completion of memory transfer operations and explicit barriers as well as kernel invocations. All commands return an event handle which can be added to a list of dependencies for commands enqueued later.

In addition to encouraging standardization between the basic capabilities of different high-performance processors, OpenCL will have a few other interesting effects. One of these will be to open up the embedded and handheld spaces to accelerated computing. OpenCL supports an embedded profile that differs primarily from the full OpenCL profile in resource limits and precision requirements. This means that it will be possible to use OpenCL to access the computational power of embedded multicore processors, including embedded GPUs, in mobile phones and set-top boxes in order to enable high-performance imaging, vision, game physics, and other applications. Applications, libraries, middleware and high-level languages based on OpenCL will be able to access the computational power of these devices.

In summary, OpenCL is an open, royalty-free standard that will enable portable, parallel programming of heterogeneous CPUs, GPUs and other processors. OpenCL is designed as a foundational layer for low-level access to hardware and also establishes a level of consistency between high-performance processors. This will give high-performance application and library writers, as well as high-level language, platform, and middleware developers, the ability to focus on higher-level concerns rather than dealing with variant semantics and syntax for the same concepts from different vendors. OpenCL will allow library, application and middleware developers to focus their efforts on providing greater functionality, rather than redeveloping code or lower-level interfaces to each new processor and accelerator.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This