OpenCL Update

By Michael D. McCool and Stefanus Du Toit

November 21, 2008

OpenCL (the Open Computing Language) is under development by the Khronos Group as an open, royalty-free standard for parallel programming of heterogeneous systems. It provides a common hardware abstraction layer to expose the computational capabilities of systems that include a diverse mix of multicore CPUs, GPUs and other parallel processors such as DSPs and the Cell, for use in accelerating a variety of compute-intensive applications. The intent of the OpenCL initiative is to provide a common foundational layer for other technologies to build upon. The OpenCL standard will also have the effect of coordinating the basic capabilities of target processors. In particular, in order to be conformant with OpenCL, processors will have to meet minimum capability, resource and precision requirements. This article reviews the organizations and process behind the OpenCL standard proposal, gives a brief overview of the nature of the proposal itself, and then discusses the implications of OpenCL for the high-performance software development community.

The Khronos organization supports the collaborative development and maintenance of several royalty-free open standards, including OpenGL, OpenGL ES, COLLADA, and OpenMAX. OpenCL is not yet ratified, but the member companies involved have already arrived at a draft specification of version 1.0, which is currently under review. The OpenCL effort was initiated by Apple, and the development of the draft specification has included the active involvement of AMD, ARM, Barco, Codeplay, Electronic Arts, Ericsson, Freescale, Imagination Technologies, IBM, Intel, Motorola, Movidia, Nokia, NVIDIA, RapidMind, and Texas Instruments.

The OpenCL specification consists of three main components: a platform API, a language for specifying computational kernels, and a runtime API. The platform API allows a developer to query a given OpenCL implementation to determine the capabilities of the devices that particular implementation supports. Once a device has been selected and a context created, the runtime API can be used to queue and manage computational and memory operations for that device. OpenCL manages and coordinates such operations using an asynchronous command queue. OpenCL command queues can include computational kernels as well as memory transfer and map/unmap operations. Asynchronous memory operations are included in order to efficiently support the separate address spaces and DMA engines used by many accelerators.

The parallel execution model of OpenCL is based on the execution of an array of functions over an abstract index space. The abstract index spaces driving parallel execution consists of n-tuples of integers with each element starting at 0. For instance, 16 parallel units of work could be associated with an index space from 0 to 15. Alternatively, using 2-tuples, those 16 units of work could be associated with (0,0) to (3,3). Three-dimensional index spaces are also supported. Computational kernels invoked over these index spaces are based on functions drawn from programs specified in OpenCL C. OpenCL C is a subset of C99 with extensions for parallelism. These extensions include support for vector types, images and built-in functions to read and write images, and memory hierarchy qualifiers for local, global, constant, and private memory spaces. The OpenCL C language also currently includes some restrictions relative to C99, particularly with regards to dynamic memory allocation, function pointers, writes to byte addresses, irreducible control flow, and recursion. Programs written in OpenCL C can either be compiled at runtime or in advance. However, OpenCL C programs compiled in advance may only work on specific hardware devices.

Each instance of a kernel is able to query its index, and then do different work and access different data based on that index. The index space defines the “parallel shape” of the work, but it is up to the kernel to decide how the abstract index will translate into data access and computation. For example, to add two arrays and place the sum in an a third output array, a kernel might access its global index, from this index compute an address in each of two input arrays, read from these arrays, perform the addition, compute the address of its result in an output array, and write the result.

A hierarchical memory model is also supported. In this model, the index space is divided into work groups. Each work-item in a work-group, in addition to accessing its own private memory, can share a local memory during the execution of the work-group. This can be used to support one additional level of hierarchical data parallelism, which is useful to capture data locality in applications such as video/image compression and matrix multiplication. However, different work-groups cannot communicate or synchronize with one another, although work items within a work-group can synchronize using barriers and communicate using local memory (if supported on a particular device). There is an extension for atomic memory operations but it is optional (for now).

OpenCL uses a relaxed memory consistency model where the local view of memory from each kernel is only guaranteed to be consistent after specified synchronization points. Synchronization points include barriers within kernels (which can only be used to synchronize the view of local memory between elements of a work-group), and queue “events.” Event dependencies can be used to synchronize commands on the work queue. Dependencies between commands come in two forms: implicit and explicit. Command queues in OpenCL can run in two modes: in-order and out-of-order. In an in-order queue, commands are implicitly ordered by their position in the queue, and the result of execution must be consistent with this order. In the out-of-order mode, OpenCL is free to run some of the commands in the queue in parallel. However, the order can be constrained explicitly by specifying event lists for each command when it is enqueued. This will cause some commands to wait until the specified events have completed. Events can be based on the completion of memory transfer operations and explicit barriers as well as kernel invocations. All commands return an event handle which can be added to a list of dependencies for commands enqueued later.

In addition to encouraging standardization between the basic capabilities of different high-performance processors, OpenCL will have a few other interesting effects. One of these will be to open up the embedded and handheld spaces to accelerated computing. OpenCL supports an embedded profile that differs primarily from the full OpenCL profile in resource limits and precision requirements. This means that it will be possible to use OpenCL to access the computational power of embedded multicore processors, including embedded GPUs, in mobile phones and set-top boxes in order to enable high-performance imaging, vision, game physics, and other applications. Applications, libraries, middleware and high-level languages based on OpenCL will be able to access the computational power of these devices.

In summary, OpenCL is an open, royalty-free standard that will enable portable, parallel programming of heterogeneous CPUs, GPUs and other processors. OpenCL is designed as a foundational layer for low-level access to hardware and also establishes a level of consistency between high-performance processors. This will give high-performance application and library writers, as well as high-level language, platform, and middleware developers, the ability to focus on higher-level concerns rather than dealing with variant semantics and syntax for the same concepts from different vendors. OpenCL will allow library, application and middleware developers to focus their efforts on providing greater functionality, rather than redeveloping code or lower-level interfaces to each new processor and accelerator.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This