The Undervalued Tech Worker

By Michael Feldman

November 27, 2008

In our supposedly tech-driven economy, it’s common to hear about computer professionals who have lost their jobs and are unable to find new work in their field. And this was occurring even before the recession. Is the IT industry really that much at odds with its own labor market? Surprisingly, yes.

In a recent InfoWorld advice column hosted by Bob Lewis, a reader talks about an increasingly hostile tech labor marketplace — not only for workers with “legacy” skill sets, but even for those with more recent experience:

[I]t’s not just the COBOL and Fortran programmers, the OS/360 and SCOPE dinosaurs. It’s also the software architects; data-base architects; system and network administrators; PHP, Python, Ruby on Rails, and Objective-C software engineers; and heavy metal engineers who were presenting papers at national and international conferences one day, and pariah the next.

The reader follows up with a familiar observation about the industry’s indifference to providing employment continuity for the workforce:

The industry [executives have] made it clear. [They are] not interested in re-training the current workforce, which is likely adequate for its needs. No, it wants fresh bodies, preferably young or beholden ones willing to accept entry-level wages for long hours and who are either burdened with few family obligations or willing to pass them over… for the most part, companies are unwilling to re-train experienced programmers to fill available slots…

I’ve written about this on a few occasions, myself, in the context of the H-1B visa program for non-U.S. workers. But something else struck me when I read Lewis’ response:

Since I try to avoid recommending solutions that require legislation, and also try to avoid moralizing in my writing, I recommend courses of action based on this being how the world works right now. People are products in the employment marketplace. If someone can’t find a job, that means for one reason or another that person isn’t a competitive product. The problem might be marketing, packaging, pricing, or a perceived lack of quality. Whatever it is, this is no different from any other marketplace — it’s up to the seller to package, price and market a product people want to buy.

Lewis says he’s not unsympathetic to the techie’s plight; he’s just trying to be honest. And he makes a good a point.

But casting people as products is not only demoralizing, it’s wrong-headed, and it reflects some unfortunate attitudes in the IT community. Specifically, the conventional wisdom is that maximizing ROI takes precedence over maximizing innovation. While that philosophy may work in a more mature industry that isn’t subject to a lot of technological turnover, like say bubble gum manufacturing, in the computing business it’s just short-sighted.

Since tech workers are the ones that design hardware, write software, and provide services, under-investing in them has some regrettable effects. The most visible example of this is the permanent “software crisis,” which is currently playing out in the industry’s attempt to apply parallel programming to the new raft of multicore and multiprocessor platforms. Moore’s Law continues to double raw processing power every 18 months or so, but only a fraction of that is realized at the application level. But wasting cheap CPU cycles seems to make more sense than applying more human ingenuity to the problem.

To be fair, firms like Intel and Microsoft, along with help from the government, are investing a ton of money in parallel programming R&D, but most companies are willing to let this be somebody else’s problem. The answer for the industry is going to require the adoption of new software platforms and training (or retraining) workers. And that’s going to filter down to everyone.

The relocation of computing into the cloud is another challenge that’s going to require a lot of new software development, infrastructure buildout, and a whole new industry to service it. Hardware is the easy part. It’s the extra labor that’s going to be the bottleneck. If the IT community convinces itself and its customers that computing will be essentially free once it moves into the cloud, there will be little incentive to invest in human resources to make it happen.

I’m not suggesting that simply retraining old techies is going to be a magic bullet. But there has to be some realization that the industry cannot rely solely on cheap processors, “free” software, and disposable IT workers to create innovation. Ultimately, IT is a labor-intensive industry. The purpose of computer systems is not to eliminate jobs, it’s to create value and increase productivity.

At the Supercomputing Conference and Expo last week, there was a panel discussion on disruptive technologies for exascale systems. It was revealing that the four technologies highlighted were all hardware-focused: flash storage, photonic communications, 3D chip stacking, and quantum computing. It’s easy to become seduced by these inventions. Once they’re designed and implemented, they can be mass-produced, with little human intervention. As expensive as semiconductor fabs are, they can work 24/7 and don’t require health insurance and retirement benefits.

But clever software can make even great hardware humble. D-Wave CTO Geordie Rose, the panel’s quantum computing advocate, argued that new algorithms can have a much bigger payoff than more powerful silicon. He noted that using Pollard’s rho algorithm from 1977, it would take 12 years to factor a 90-digit number on a modern-day 400 teraflop Blue Gene supercomputer. But using the newer quadratic seive algorithm, it would take just 3 years to perform the same operation on a 1977 Apple II computer. When you consider the multi-million dollar investment that went into the Blue Gene supercomputer compared to the probable investment that went into developing the new algorithm, you can get some sense of the industry’s misplaced priorities.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This