Reconfigurable Computing Prospects on the Rise

By Michael Feldman

December 3, 2008

With all the recent hoopla about GPU-accelerated HPC, reconfigurable computing with Field Programmable Gate Array (FPGA) has been getting proportionally less attention. While NVIDIA has led the GPU push in HPC, there is no single vendor in the reconfigurable computing space that has jumped into the driver’s seat. That hasn’t kept a variety of smaller players from trying.

Unlike GPUs — or CPUs for that matter — FPGAs require an unconventional programming model. This stems from the fact that the chip’s logic elements must be custom-configured before applications can run on them. This process is accomplished via software, which in this case is used to implement the best-fit hardware design for the application code. This is not something the average programmer is trained to do. Some have likened it to writing assembly code, but it is actually worse that. It’s more like designing the assembly language itself.

The attractiveness of FPGAs is that they can be custom configured to run specific application workloads efficiently. If a different workload needs to be run, the FPGA can be reconfigured accordingly. Switching configurations takes just milliseconds.

Like GPUs, FPGAs can offer as much as one or two orders of magnitude performance gain for certain applications and can do it with a fraction of the power consumption of a CPU-only implementation. While a perception exists that there is a battle between FPGAs and GPUs for general-purpose HPC acceleration, there’s actually plenty of daylight between the two architectures that suggests different classes of applications would gravitate toward one or the other. For example, most bioinformatics applications, which are integer based and highly parallel in nature, are ideally suited to FPGA silicon, but would not be particularly applicable to GPUs. Image recognition (but not rendering), encryption/decryption, and FFT-based codes are also good fits for FPGAs.

The fact that FPGAs are standard gear in high performance appliances like market data feeds, network routers, military systems, and medical imaging devices points to their applicability for streaming HPC workloads. But since FPGAs are mainly intended for embedded platforms to replace or augment digital signal processors (DSPs) or other custom ASICs, their entry into the world of servers and workstations, where the majority of HPC is performed, has been relatively recent. Fortunately developments in the reconfigurable computing arena have been coalescing over the past couple of years to make life more hospitable for FPGA-based HPC acceleration.

Since 2006, the opening up of AMD’s HyperTransport interface, via Torrenza, and the subsequent licensing of Intel’s Front Side Bus (FSB) has made FPGA coprocessing a much more practical endeavor. Companies like XtremeData, DRC Computer, and Nallatech have picked up on this and developed FPGA expansion modules for x86-based platforms. Prior to this, only custom solutions such as SGI’s RASC (Reconfigurable Application Specific Computing) technology and Cray’s XD1 system were possible.  This relegated reconfigurable computing to research projects and government buyers with deep pockets. The ability to hook an FPGA onto an x86 system bus dramatically expands the market.

Making FPGAs socket friendly also gives the devices an interesting advantage over GPUs. While NVIDIA’s Tesla and AMD’s FireStream devices communicate to the host via a PCIe link, socketed FPGAs can talk to the CPU directly, using the native processor bus. This provides latencies on the order of 250 ns — less than half what can be achieved over PCIe. Being on the bus also means an FPGA has peer access to the processor’s memory and can operate without host intervention.

With FPGAs playing nice with x86 hardware, reconfigurable computing toolmakers such as Mitrionics, Celoxica, and Impulse Accelerated Technologies have been hooking up with the FPGA board makers and OEMs (like HP) to offer more integrated acceleration solutions. The toolmakers offer programming environments that allow developers to write C (or C-like) code that can be compiled into an FPGA logic design, which can subsequently be loaded onto the chip. Although this alleviates the developers from the more difficult task of doing low-level hardware design via VHDL or Verilog, even at this level the programming of FPGAs remains the most tenuous step in reconfigurable computing.

The fundamental problem is that the tools offered do not entirely shield the programmer from hardware design issues, nor do they use a standard programming environment. In the case of Celoxica, Handel C is used as a hardware design language to define the FPGA implementation. Similarly, Mitrionics invented Mitrion C, which employs the Mitrion Virtual Processor as an intermediate representation of the final hardware design. In both cases, these languages are not standard C in any sense, so they rely upon custom compiler, runtime and debugger technologies and force the customer to maintain vendor-specific source code.

Impulse Accelerated Technologies created Impulse C, which is compatible with standard C, but extends the language’s capability with some extra data types and library functions for FPGA computing. This has the advantage of allowing the developer to maintain a C source base and use standard debugging tools for development. Once debugging is complete, the Impulse compiler is used to generate the FPGA bitmap image corresponding to the C code intended for acceleration. Impulse C is designed for streaming applications, but can be adapted for a shared memory model as well.

The most integrated and most ambitious reconfigurable computing solution today is the recently announced Convey Computer “hybrid core” platform, which wraps multiple Xilinx FPGAs into a reconfigurable coprocessor alongside an x86 CPU. The use of application workload “personalities” (essentially pre-canned FPGA bitmaps) shields the developer from hardware design issues or even explicit parallel programming, leaving the compiler and runtime system to sort out the CPU and FPGA code mappings. The entire system can be programmed with ANSI standard C/C++ and Fortran, eliminating one of the largest barriers to programmer productivity for accelerator-based architectures.

Because of its compatibility with standard programming languages, the Convey offering has the potential to make coprocessor acceleration — FPGA-based or otherwise — a lot more accessible to HPC users. That doesn’t necessarily mean other reconfigurable computing solutions will be left behind. There should be room in the market for FPGA expansion modules that can be applied across a range of server platforms, and the first generation of reconfigurable computing toolmakers can develop software components for a growing ecosystem.

In fact, David Pellerin, co-founder and CEO of Impulse Accelerated Technologies doesn’t consider Convey a competitor. Rather, he believes the C and Fortran workflow is a good model to foster for FPGAs and thinks the Impulse offerings could have a place in such an environment. “I believe our tools could play a role in allowing Convey ‘personality’ developers — such as system integrators and algorithm domain specialists — to more quickly create these FPGA-based library elements,” says Pellerin.

While there’s little reason to expect a huge rush of HPC applications to FPGA-based systems, steady progress in reconfigurable hardware and software should enliven the market over the next couple of years (software standards certainly wouldn’t hurt either). As the latest 65nm FPGA silicon devices — Xilinx Virtex-5 and Altera Stratix III — starts to make their way into HPC platforms, more silicon real estate will be available for even larger problems, especially ones involving a lot of floating point parallelism. With the advent of HyperTransport 3.0 and Intel’s QuickPath interconnect bus for the Nehalem processor family, higher performing x86 coprocessor links will soon be available. And finally, as the introduction of the Convey architecture demonstrates, reconfigurable computing can be completely encapsulated, offering the power of FPGAs with a friendly face.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This