Reconfigurable Computing Prospects on the Rise

By Michael Feldman

December 3, 2008

With all the recent hoopla about GPU-accelerated HPC, reconfigurable computing with Field Programmable Gate Array (FPGA) has been getting proportionally less attention. While NVIDIA has led the GPU push in HPC, there is no single vendor in the reconfigurable computing space that has jumped into the driver’s seat. That hasn’t kept a variety of smaller players from trying.

Unlike GPUs — or CPUs for that matter — FPGAs require an unconventional programming model. This stems from the fact that the chip’s logic elements must be custom-configured before applications can run on them. This process is accomplished via software, which in this case is used to implement the best-fit hardware design for the application code. This is not something the average programmer is trained to do. Some have likened it to writing assembly code, but it is actually worse that. It’s more like designing the assembly language itself.

The attractiveness of FPGAs is that they can be custom configured to run specific application workloads efficiently. If a different workload needs to be run, the FPGA can be reconfigured accordingly. Switching configurations takes just milliseconds.

Like GPUs, FPGAs can offer as much as one or two orders of magnitude performance gain for certain applications and can do it with a fraction of the power consumption of a CPU-only implementation. While a perception exists that there is a battle between FPGAs and GPUs for general-purpose HPC acceleration, there’s actually plenty of daylight between the two architectures that suggests different classes of applications would gravitate toward one or the other. For example, most bioinformatics applications, which are integer based and highly parallel in nature, are ideally suited to FPGA silicon, but would not be particularly applicable to GPUs. Image recognition (but not rendering), encryption/decryption, and FFT-based codes are also good fits for FPGAs.

The fact that FPGAs are standard gear in high performance appliances like market data feeds, network routers, military systems, and medical imaging devices points to their applicability for streaming HPC workloads. But since FPGAs are mainly intended for embedded platforms to replace or augment digital signal processors (DSPs) or other custom ASICs, their entry into the world of servers and workstations, where the majority of HPC is performed, has been relatively recent. Fortunately developments in the reconfigurable computing arena have been coalescing over the past couple of years to make life more hospitable for FPGA-based HPC acceleration.

Since 2006, the opening up of AMD’s HyperTransport interface, via Torrenza, and the subsequent licensing of Intel’s Front Side Bus (FSB) has made FPGA coprocessing a much more practical endeavor. Companies like XtremeData, DRC Computer, and Nallatech have picked up on this and developed FPGA expansion modules for x86-based platforms. Prior to this, only custom solutions such as SGI’s RASC (Reconfigurable Application Specific Computing) technology and Cray’s XD1 system were possible.  This relegated reconfigurable computing to research projects and government buyers with deep pockets. The ability to hook an FPGA onto an x86 system bus dramatically expands the market.

Making FPGAs socket friendly also gives the devices an interesting advantage over GPUs. While NVIDIA’s Tesla and AMD’s FireStream devices communicate to the host via a PCIe link, socketed FPGAs can talk to the CPU directly, using the native processor bus. This provides latencies on the order of 250 ns — less than half what can be achieved over PCIe. Being on the bus also means an FPGA has peer access to the processor’s memory and can operate without host intervention.

With FPGAs playing nice with x86 hardware, reconfigurable computing toolmakers such as Mitrionics, Celoxica, and Impulse Accelerated Technologies have been hooking up with the FPGA board makers and OEMs (like HP) to offer more integrated acceleration solutions. The toolmakers offer programming environments that allow developers to write C (or C-like) code that can be compiled into an FPGA logic design, which can subsequently be loaded onto the chip. Although this alleviates the developers from the more difficult task of doing low-level hardware design via VHDL or Verilog, even at this level the programming of FPGAs remains the most tenuous step in reconfigurable computing.

The fundamental problem is that the tools offered do not entirely shield the programmer from hardware design issues, nor do they use a standard programming environment. In the case of Celoxica, Handel C is used as a hardware design language to define the FPGA implementation. Similarly, Mitrionics invented Mitrion C, which employs the Mitrion Virtual Processor as an intermediate representation of the final hardware design. In both cases, these languages are not standard C in any sense, so they rely upon custom compiler, runtime and debugger technologies and force the customer to maintain vendor-specific source code.

Impulse Accelerated Technologies created Impulse C, which is compatible with standard C, but extends the language’s capability with some extra data types and library functions for FPGA computing. This has the advantage of allowing the developer to maintain a C source base and use standard debugging tools for development. Once debugging is complete, the Impulse compiler is used to generate the FPGA bitmap image corresponding to the C code intended for acceleration. Impulse C is designed for streaming applications, but can be adapted for a shared memory model as well.

The most integrated and most ambitious reconfigurable computing solution today is the recently announced Convey Computer “hybrid core” platform, which wraps multiple Xilinx FPGAs into a reconfigurable coprocessor alongside an x86 CPU. The use of application workload “personalities” (essentially pre-canned FPGA bitmaps) shields the developer from hardware design issues or even explicit parallel programming, leaving the compiler and runtime system to sort out the CPU and FPGA code mappings. The entire system can be programmed with ANSI standard C/C++ and Fortran, eliminating one of the largest barriers to programmer productivity for accelerator-based architectures.

Because of its compatibility with standard programming languages, the Convey offering has the potential to make coprocessor acceleration — FPGA-based or otherwise — a lot more accessible to HPC users. That doesn’t necessarily mean other reconfigurable computing solutions will be left behind. There should be room in the market for FPGA expansion modules that can be applied across a range of server platforms, and the first generation of reconfigurable computing toolmakers can develop software components for a growing ecosystem.

In fact, David Pellerin, co-founder and CEO of Impulse Accelerated Technologies doesn’t consider Convey a competitor. Rather, he believes the C and Fortran workflow is a good model to foster for FPGAs and thinks the Impulse offerings could have a place in such an environment. “I believe our tools could play a role in allowing Convey ‘personality’ developers — such as system integrators and algorithm domain specialists — to more quickly create these FPGA-based library elements,” says Pellerin.

While there’s little reason to expect a huge rush of HPC applications to FPGA-based systems, steady progress in reconfigurable hardware and software should enliven the market over the next couple of years (software standards certainly wouldn’t hurt either). As the latest 65nm FPGA silicon devices — Xilinx Virtex-5 and Altera Stratix III — starts to make their way into HPC platforms, more silicon real estate will be available for even larger problems, especially ones involving a lot of floating point parallelism. With the advent of HyperTransport 3.0 and Intel’s QuickPath interconnect bus for the Nehalem processor family, higher performing x86 coprocessor links will soon be available. And finally, as the introduction of the Convey architecture demonstrates, reconfigurable computing can be completely encapsulated, offering the power of FPGAs with a friendly face.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This