Decoupling HPC From the Datacenter

By Michael Feldman

December 4, 2008

The democratization of HPC is unlikely to happen if every company and institution is forced to build and maintain multi-million dollar datacenters to house supercomputers. Power, cooling and space constraints as well as a shortage of system administration expertise will limit the spread of HPC datacenters.

With the concentration of computing power into blades and ever-smaller form factors, building a large datacenter has become an adventure in creative plumbing. The new 95,000 square-foot facility under construction at the University of Illinois that will house the multi-petaflop ‘Blue Waters’ supercomputer in 2011 is expected to cost $72.5 million (compared to the $194.4 million for the super itself). Add in lifetime power and cooling for what is certain to be a multi-megawatt system, and it’s reasonable to project the facility plus operational costs will approach the original outlay for the hardware itself.

For legacy datacenters that can’t expand, especially those in urban areas, the challenge is to upgrade with hardware that fits into the existing space but doesn’t overload the energy and cooling capacity of the building. And for workstation-bound users who would like to move into the HPC realm, but don’t have a datacenter and have no plans to build one, the problem is even more obvious.

Are there alternatives? There are two relatively recent developments that could free HPC users from their datacenter habit: personal supercomputing and cloud computing.

I realize that using the cloud to alleviate the datacenter problem seems counter-intuitive. Obviously cloud computing requires datacenters too. You’re just pushing the problem somwhere else. The idea here is to get rid of on-site facilities. The big advantage is that ultra-scale datacenters can be (and often are) located where power, cooling and real estate are not at a premium, and can use economies of scale to further lower costs.

For example, Google, Microsoft and Yahoo have set up shop along the Columbia River in Oregon to tap the cheap hydro-electric power in the area. To serve its expanding cloud services, Amazon recently announced it was building three new facilities along the Columbia, along with its own 10-megawatt power substation. Google is even considering floating datacenters offshore that could be powered and cooled by the differential in ocean temperatures.

The advantages of computing in the cloud are obvious. Not only can you ditch the local datacenter, but the supercomputer as well, along with all the associated administration and maintenance costs of the hardware and system software. At the same time, you only pay for the computing you use and can scale your problem up (or down) as required.

The disadvantages are just as numerous and are well outlined in a recent article by LSU’s Thomas Sterling and Dylan Stark. In a nutshell, there are classes of HPC apps that don’t map well to the cloud as it exists today, either because of limitations in the cloud infrastructure or data security issues. The former has to do with the deleterious effects of virtualization and loosely-coupled clusters on performance, especially for highly-tuned and tightly-coupled HPC applications. As far as data security goes, well let’s just say Los Alamos won’t be doing nuclear weapons simulations on Amazon’s EC2 anytime soon.

But even the authors seem to agree that for many capacity HPC applications, like data analysis and visualization, the cloud paradigm offers a lot more flexibility than home-grown set-ups. And this model will be especially advantageous for smaller organizations and groups that have a hard time justifying a datacenter based on peak computing requirements.

A handful of HPC services already exist. Sun’s Grid Compute Utility, IBM’s Computing on Demand and Interactive Supercomputing’s Star-P On-Demand have been available for some time. The MathWorks and Wolfram Research recently incorporated cloud computing support into MATLAB and Mathematica, respectively. And this week, Univa UD launched an HPC virtualization capability that uses Amazon EC2. I expect to see a raft of new HPC cloud offerings in 2009.

Moving back down to Earth, the other potential datacenter killer is the personal supercomputer (PSC), which can inhabit the desktop, deskside or office closet. The current generation of PSCs is largely based on GPUs, which can now provide multi-teraflop acceleration. These machines were much in evidence at SC08, thanks in large part to the introduction of NVIDIA Tesla-equipped systems.

Of course, we’ve seen these personal supers come and go. Just a few years ago, Tyan Computer and Orion Multisystems came out with deskside cluster machines. But these sub-teraflop machines never caught on.

The new crop of GPU-accelerated machines seem more permanent to me. For one thing, they’re more powerful. At 4 teraflops (single precision) they’ve got some serious performance to offer. Plus, with CUDA, OpenCL, and a host of other software that is quickly becoming available from third-party tool makers, it looks like GPU computing has quickly established a new niche in the HPC ecosystem. With big-name players like Cray, Dell and Penguin Computing offering PSCs (with both Linux and Windows environments), there is a much better chance that these machines will endure.

Non-GPU PSCs are possible too. SiCortex already offers its own MIPS-based 72-core desktop system, although it’s mainly positioned as a development machine for the company’s larger clusters. If newcomer Convey Computer decided to shrink-wrap its new FPGA-based “hybrid core” server into a deskside or even desktop system, that could have the makings of a very interesting HPC system for personal use. For those of you who want to stick with vanilla x86 boxes, it will soon be possible to build personal multi-teraflop machines from Intel’s upcoming Intel Nehalem processors. Further down the road, the manycore Larrabee processor — or derivatives thereof — should provide a natural computing engine for desktop teraflopping.

So which model will prevail? Here’s one possible scenario: Desktop, deskside, and office systems will eat away the low and middle end of the market from below, while HPC applications requiring really large-scale parallelism will move into the cloud. For capability supercomputing applications, perhaps clouds will emerge designed specifically for high-end HPC. It’s not too hard to imagine the NSF’s TeraGrid and the European Commission’s DEISA (Distributed European Infrastructure for Supercomputing Applications) supporting cloud services targeted for supercomputing. The U.S. DOE might develop complementary clouds for its user community.

To the extent datacenter issues inhibit HPC adoption, clouds and PSCs will look ever more attractive. I anticipate a lot of experimentation in both areas in the upcoming year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This