Decoupling HPC From the Datacenter

By Michael Feldman

December 4, 2008

The democratization of HPC is unlikely to happen if every company and institution is forced to build and maintain multi-million dollar datacenters to house supercomputers. Power, cooling and space constraints as well as a shortage of system administration expertise will limit the spread of HPC datacenters.

With the concentration of computing power into blades and ever-smaller form factors, building a large datacenter has become an adventure in creative plumbing. The new 95,000 square-foot facility under construction at the University of Illinois that will house the multi-petaflop ‘Blue Waters’ supercomputer in 2011 is expected to cost $72.5 million (compared to the $194.4 million for the super itself). Add in lifetime power and cooling for what is certain to be a multi-megawatt system, and it’s reasonable to project the facility plus operational costs will approach the original outlay for the hardware itself.

For legacy datacenters that can’t expand, especially those in urban areas, the challenge is to upgrade with hardware that fits into the existing space but doesn’t overload the energy and cooling capacity of the building. And for workstation-bound users who would like to move into the HPC realm, but don’t have a datacenter and have no plans to build one, the problem is even more obvious.

Are there alternatives? There are two relatively recent developments that could free HPC users from their datacenter habit: personal supercomputing and cloud computing.

I realize that using the cloud to alleviate the datacenter problem seems counter-intuitive. Obviously cloud computing requires datacenters too. You’re just pushing the problem somwhere else. The idea here is to get rid of on-site facilities. The big advantage is that ultra-scale datacenters can be (and often are) located where power, cooling and real estate are not at a premium, and can use economies of scale to further lower costs.

For example, Google, Microsoft and Yahoo have set up shop along the Columbia River in Oregon to tap the cheap hydro-electric power in the area. To serve its expanding cloud services, Amazon recently announced it was building three new facilities along the Columbia, along with its own 10-megawatt power substation. Google is even considering floating datacenters offshore that could be powered and cooled by the differential in ocean temperatures.

The advantages of computing in the cloud are obvious. Not only can you ditch the local datacenter, but the supercomputer as well, along with all the associated administration and maintenance costs of the hardware and system software. At the same time, you only pay for the computing you use and can scale your problem up (or down) as required.

The disadvantages are just as numerous and are well outlined in a recent article by LSU’s Thomas Sterling and Dylan Stark. In a nutshell, there are classes of HPC apps that don’t map well to the cloud as it exists today, either because of limitations in the cloud infrastructure or data security issues. The former has to do with the deleterious effects of virtualization and loosely-coupled clusters on performance, especially for highly-tuned and tightly-coupled HPC applications. As far as data security goes, well let’s just say Los Alamos won’t be doing nuclear weapons simulations on Amazon’s EC2 anytime soon.

But even the authors seem to agree that for many capacity HPC applications, like data analysis and visualization, the cloud paradigm offers a lot more flexibility than home-grown set-ups. And this model will be especially advantageous for smaller organizations and groups that have a hard time justifying a datacenter based on peak computing requirements.

A handful of HPC services already exist. Sun’s Grid Compute Utility, IBM’s Computing on Demand and Interactive Supercomputing’s Star-P On-Demand have been available for some time. The MathWorks and Wolfram Research recently incorporated cloud computing support into MATLAB and Mathematica, respectively. And this week, Univa UD launched an HPC virtualization capability that uses Amazon EC2. I expect to see a raft of new HPC cloud offerings in 2009.

Moving back down to Earth, the other potential datacenter killer is the personal supercomputer (PSC), which can inhabit the desktop, deskside or office closet. The current generation of PSCs is largely based on GPUs, which can now provide multi-teraflop acceleration. These machines were much in evidence at SC08, thanks in large part to the introduction of NVIDIA Tesla-equipped systems.

Of course, we’ve seen these personal supers come and go. Just a few years ago, Tyan Computer and Orion Multisystems came out with deskside cluster machines. But these sub-teraflop machines never caught on.

The new crop of GPU-accelerated machines seem more permanent to me. For one thing, they’re more powerful. At 4 teraflops (single precision) they’ve got some serious performance to offer. Plus, with CUDA, OpenCL, and a host of other software that is quickly becoming available from third-party tool makers, it looks like GPU computing has quickly established a new niche in the HPC ecosystem. With big-name players like Cray, Dell and Penguin Computing offering PSCs (with both Linux and Windows environments), there is a much better chance that these machines will endure.

Non-GPU PSCs are possible too. SiCortex already offers its own MIPS-based 72-core desktop system, although it’s mainly positioned as a development machine for the company’s larger clusters. If newcomer Convey Computer decided to shrink-wrap its new FPGA-based “hybrid core” server into a deskside or even desktop system, that could have the makings of a very interesting HPC system for personal use. For those of you who want to stick with vanilla x86 boxes, it will soon be possible to build personal multi-teraflop machines from Intel’s upcoming Intel Nehalem processors. Further down the road, the manycore Larrabee processor — or derivatives thereof — should provide a natural computing engine for desktop teraflopping.

So which model will prevail? Here’s one possible scenario: Desktop, deskside, and office systems will eat away the low and middle end of the market from below, while HPC applications requiring really large-scale parallelism will move into the cloud. For capability supercomputing applications, perhaps clouds will emerge designed specifically for high-end HPC. It’s not too hard to imagine the NSF’s TeraGrid and the European Commission’s DEISA (Distributed European Infrastructure for Supercomputing Applications) supporting cloud services targeted for supercomputing. The U.S. DOE might develop complementary clouds for its user community.

To the extent datacenter issues inhibit HPC adoption, clouds and PSCs will look ever more attractive. I anticipate a lot of experimentation in both areas in the upcoming year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This