Decoupling HPC From the Datacenter

By Michael Feldman

December 4, 2008

The democratization of HPC is unlikely to happen if every company and institution is forced to build and maintain multi-million dollar datacenters to house supercomputers. Power, cooling and space constraints as well as a shortage of system administration expertise will limit the spread of HPC datacenters.

With the concentration of computing power into blades and ever-smaller form factors, building a large datacenter has become an adventure in creative plumbing. The new 95,000 square-foot facility under construction at the University of Illinois that will house the multi-petaflop ‘Blue Waters’ supercomputer in 2011 is expected to cost $72.5 million (compared to the $194.4 million for the super itself). Add in lifetime power and cooling for what is certain to be a multi-megawatt system, and it’s reasonable to project the facility plus operational costs will approach the original outlay for the hardware itself.

For legacy datacenters that can’t expand, especially those in urban areas, the challenge is to upgrade with hardware that fits into the existing space but doesn’t overload the energy and cooling capacity of the building. And for workstation-bound users who would like to move into the HPC realm, but don’t have a datacenter and have no plans to build one, the problem is even more obvious.

Are there alternatives? There are two relatively recent developments that could free HPC users from their datacenter habit: personal supercomputing and cloud computing.

I realize that using the cloud to alleviate the datacenter problem seems counter-intuitive. Obviously cloud computing requires datacenters too. You’re just pushing the problem somwhere else. The idea here is to get rid of on-site facilities. The big advantage is that ultra-scale datacenters can be (and often are) located where power, cooling and real estate are not at a premium, and can use economies of scale to further lower costs.

For example, Google, Microsoft and Yahoo have set up shop along the Columbia River in Oregon to tap the cheap hydro-electric power in the area. To serve its expanding cloud services, Amazon recently announced it was building three new facilities along the Columbia, along with its own 10-megawatt power substation. Google is even considering floating datacenters offshore that could be powered and cooled by the differential in ocean temperatures.

The advantages of computing in the cloud are obvious. Not only can you ditch the local datacenter, but the supercomputer as well, along with all the associated administration and maintenance costs of the hardware and system software. At the same time, you only pay for the computing you use and can scale your problem up (or down) as required.

The disadvantages are just as numerous and are well outlined in a recent article by LSU’s Thomas Sterling and Dylan Stark. In a nutshell, there are classes of HPC apps that don’t map well to the cloud as it exists today, either because of limitations in the cloud infrastructure or data security issues. The former has to do with the deleterious effects of virtualization and loosely-coupled clusters on performance, especially for highly-tuned and tightly-coupled HPC applications. As far as data security goes, well let’s just say Los Alamos won’t be doing nuclear weapons simulations on Amazon’s EC2 anytime soon.

But even the authors seem to agree that for many capacity HPC applications, like data analysis and visualization, the cloud paradigm offers a lot more flexibility than home-grown set-ups. And this model will be especially advantageous for smaller organizations and groups that have a hard time justifying a datacenter based on peak computing requirements.

A handful of HPC services already exist. Sun’s Grid Compute Utility, IBM’s Computing on Demand and Interactive Supercomputing’s Star-P On-Demand have been available for some time. The MathWorks and Wolfram Research recently incorporated cloud computing support into MATLAB and Mathematica, respectively. And this week, Univa UD launched an HPC virtualization capability that uses Amazon EC2. I expect to see a raft of new HPC cloud offerings in 2009.

Moving back down to Earth, the other potential datacenter killer is the personal supercomputer (PSC), which can inhabit the desktop, deskside or office closet. The current generation of PSCs is largely based on GPUs, which can now provide multi-teraflop acceleration. These machines were much in evidence at SC08, thanks in large part to the introduction of NVIDIA Tesla-equipped systems.

Of course, we’ve seen these personal supers come and go. Just a few years ago, Tyan Computer and Orion Multisystems came out with deskside cluster machines. But these sub-teraflop machines never caught on.

The new crop of GPU-accelerated machines seem more permanent to me. For one thing, they’re more powerful. At 4 teraflops (single precision) they’ve got some serious performance to offer. Plus, with CUDA, OpenCL, and a host of other software that is quickly becoming available from third-party tool makers, it looks like GPU computing has quickly established a new niche in the HPC ecosystem. With big-name players like Cray, Dell and Penguin Computing offering PSCs (with both Linux and Windows environments), there is a much better chance that these machines will endure.

Non-GPU PSCs are possible too. SiCortex already offers its own MIPS-based 72-core desktop system, although it’s mainly positioned as a development machine for the company’s larger clusters. If newcomer Convey Computer decided to shrink-wrap its new FPGA-based “hybrid core” server into a deskside or even desktop system, that could have the makings of a very interesting HPC system for personal use. For those of you who want to stick with vanilla x86 boxes, it will soon be possible to build personal multi-teraflop machines from Intel’s upcoming Intel Nehalem processors. Further down the road, the manycore Larrabee processor — or derivatives thereof — should provide a natural computing engine for desktop teraflopping.

So which model will prevail? Here’s one possible scenario: Desktop, deskside, and office systems will eat away the low and middle end of the market from below, while HPC applications requiring really large-scale parallelism will move into the cloud. For capability supercomputing applications, perhaps clouds will emerge designed specifically for high-end HPC. It’s not too hard to imagine the NSF’s TeraGrid and the European Commission’s DEISA (Distributed European Infrastructure for Supercomputing Applications) supporting cloud services targeted for supercomputing. The U.S. DOE might develop complementary clouds for its user community.

To the extent datacenter issues inhibit HPC adoption, clouds and PSCs will look ever more attractive. I anticipate a lot of experimentation in both areas in the upcoming year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This