Decoupling HPC From the Datacenter

By Michael Feldman

December 4, 2008

The democratization of HPC is unlikely to happen if every company and institution is forced to build and maintain multi-million dollar datacenters to house supercomputers. Power, cooling and space constraints as well as a shortage of system administration expertise will limit the spread of HPC datacenters.

With the concentration of computing power into blades and ever-smaller form factors, building a large datacenter has become an adventure in creative plumbing. The new 95,000 square-foot facility under construction at the University of Illinois that will house the multi-petaflop ‘Blue Waters’ supercomputer in 2011 is expected to cost $72.5 million (compared to the $194.4 million for the super itself). Add in lifetime power and cooling for what is certain to be a multi-megawatt system, and it’s reasonable to project the facility plus operational costs will approach the original outlay for the hardware itself.

For legacy datacenters that can’t expand, especially those in urban areas, the challenge is to upgrade with hardware that fits into the existing space but doesn’t overload the energy and cooling capacity of the building. And for workstation-bound users who would like to move into the HPC realm, but don’t have a datacenter and have no plans to build one, the problem is even more obvious.

Are there alternatives? There are two relatively recent developments that could free HPC users from their datacenter habit: personal supercomputing and cloud computing.

I realize that using the cloud to alleviate the datacenter problem seems counter-intuitive. Obviously cloud computing requires datacenters too. You’re just pushing the problem somwhere else. The idea here is to get rid of on-site facilities. The big advantage is that ultra-scale datacenters can be (and often are) located where power, cooling and real estate are not at a premium, and can use economies of scale to further lower costs.

For example, Google, Microsoft and Yahoo have set up shop along the Columbia River in Oregon to tap the cheap hydro-electric power in the area. To serve its expanding cloud services, Amazon recently announced it was building three new facilities along the Columbia, along with its own 10-megawatt power substation. Google is even considering floating datacenters offshore that could be powered and cooled by the differential in ocean temperatures.

The advantages of computing in the cloud are obvious. Not only can you ditch the local datacenter, but the supercomputer as well, along with all the associated administration and maintenance costs of the hardware and system software. At the same time, you only pay for the computing you use and can scale your problem up (or down) as required.

The disadvantages are just as numerous and are well outlined in a recent article by LSU’s Thomas Sterling and Dylan Stark. In a nutshell, there are classes of HPC apps that don’t map well to the cloud as it exists today, either because of limitations in the cloud infrastructure or data security issues. The former has to do with the deleterious effects of virtualization and loosely-coupled clusters on performance, especially for highly-tuned and tightly-coupled HPC applications. As far as data security goes, well let’s just say Los Alamos won’t be doing nuclear weapons simulations on Amazon’s EC2 anytime soon.

But even the authors seem to agree that for many capacity HPC applications, like data analysis and visualization, the cloud paradigm offers a lot more flexibility than home-grown set-ups. And this model will be especially advantageous for smaller organizations and groups that have a hard time justifying a datacenter based on peak computing requirements.

A handful of HPC services already exist. Sun’s Grid Compute Utility, IBM’s Computing on Demand and Interactive Supercomputing’s Star-P On-Demand have been available for some time. The MathWorks and Wolfram Research recently incorporated cloud computing support into MATLAB and Mathematica, respectively. And this week, Univa UD launched an HPC virtualization capability that uses Amazon EC2. I expect to see a raft of new HPC cloud offerings in 2009.

Moving back down to Earth, the other potential datacenter killer is the personal supercomputer (PSC), which can inhabit the desktop, deskside or office closet. The current generation of PSCs is largely based on GPUs, which can now provide multi-teraflop acceleration. These machines were much in evidence at SC08, thanks in large part to the introduction of NVIDIA Tesla-equipped systems.

Of course, we’ve seen these personal supers come and go. Just a few years ago, Tyan Computer and Orion Multisystems came out with deskside cluster machines. But these sub-teraflop machines never caught on.

The new crop of GPU-accelerated machines seem more permanent to me. For one thing, they’re more powerful. At 4 teraflops (single precision) they’ve got some serious performance to offer. Plus, with CUDA, OpenCL, and a host of other software that is quickly becoming available from third-party tool makers, it looks like GPU computing has quickly established a new niche in the HPC ecosystem. With big-name players like Cray, Dell and Penguin Computing offering PSCs (with both Linux and Windows environments), there is a much better chance that these machines will endure.

Non-GPU PSCs are possible too. SiCortex already offers its own MIPS-based 72-core desktop system, although it’s mainly positioned as a development machine for the company’s larger clusters. If newcomer Convey Computer decided to shrink-wrap its new FPGA-based “hybrid core” server into a deskside or even desktop system, that could have the makings of a very interesting HPC system for personal use. For those of you who want to stick with vanilla x86 boxes, it will soon be possible to build personal multi-teraflop machines from Intel’s upcoming Intel Nehalem processors. Further down the road, the manycore Larrabee processor — or derivatives thereof — should provide a natural computing engine for desktop teraflopping.

So which model will prevail? Here’s one possible scenario: Desktop, deskside, and office systems will eat away the low and middle end of the market from below, while HPC applications requiring really large-scale parallelism will move into the cloud. For capability supercomputing applications, perhaps clouds will emerge designed specifically for high-end HPC. It’s not too hard to imagine the NSF’s TeraGrid and the European Commission’s DEISA (Distributed European Infrastructure for Supercomputing Applications) supporting cloud services targeted for supercomputing. The U.S. DOE might develop complementary clouds for its user community.

To the extent datacenter issues inhibit HPC adoption, clouds and PSCs will look ever more attractive. I anticipate a lot of experimentation in both areas in the upcoming year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This