Aggregating Clusters Through Virtualization; Virtual SMP Benefits

By Shai Fultheim

December 16, 2008

Aggregation is a virtualization technique that makes multiple physical systems appear to function as a single logical system. The building blocks for this approach are the same building blocks used in scale-out (clustering): industry-standard servers and high-speed interconnects. Aggregation fundamentally replaces the functionality of custom and proprietary chipsets with software, leveraging commodity interconnects such as InfiniBand. It utilizes only a tiny fraction of the system’s CPUs and RAM to provide chipset-level services without sacrificing system performance.

By running a single logical system, customers reduce the management costs associated with managing multiple cluster nodes, and take advantage of large contiguous memory and unified I/O architecture. To understand how aggregation works, we will first explain the architecture of a traditional SMP system, and then dive into the details of the aggregation approach.

Traditional Multi-Processor Systems

Traditional multi-processor systems run a single operating system (OS). The OS interacts with the system using a well-defined hardware interface, which provides the OS with predefined services to use and control the hardware. These interfaces may include hardware detection and probing, memory ordering semantics, I/O space access and interrupt delivery mechanisms.

Intel’s Multiprocessor Specification allows a single copy of an operating system to run on a single CPU system as well as on a multi-CPU system with up to 255 CPUs. It details a well-defined interface that allows the OS to know exactly how to probe the hardware to determine what kind of system is running underneath it, and then behaves accordingly. This interface also handles the coordination of the underlying system with the OS. For a traditional multi-processor system, such interface is implemented in a silicon chipset.

In addition to the hardware interface, the multi-processor system consists of CPUs, memory and I/O subsystems. These components are all connected together with a proprietary backplane, often implemented by a chipset. Examples of such chipsets and backplanes are Intel’s FSB (Front Side Bus), AMD’s HT (Hyper-Transport), SUN’s CrossBar, SGI’s NUMALINK and IBM’s XA.

The chipset and the proprietary backplane (system interconnect) are the elements where multi-processor systems differ the most from each other and where the major cost of a high-end multi-processor systems is derived. The system interconnect is expensive because the more processors that are added to a system, the more complex it becomes to connect them all together in a manner that ensures both coherency and performance. Traditional multi-processor systems require the creation of a custom chipset to implement the system interconnect to allow processor, memory and I/O communication.

Software Approach: Aggregation

Aggregation reduces the costs associated with custom chipsets and backplanes. It requires multiple high-volume, industry-standard x86 systems (processor speed and amount of memory across boards do not have to be the same). In addition, a high-speed, low-latency interconnect serves as backplane. InfiniBand infrastructure excels in this regard. The aggregation software is loaded on each system board below the operating system layer.

One System

Once loaded into the memory of each of the system boards, the virtualization software aggregates the compute, memory and I/O capabilities of each system and presents a unified virtual system to both the operating system and the applications running above the OS. The aggregation software uses a software-interception engine in the form of a Virtual Machine Monitor (VMM) to provide a uniform execution environment. The software also creates the required BIOS and Advanced Configuration and Power Interface (ACPI) environment to provide the OS (and the software stack above the OS) a coherent image of a single system.

Coherent Memory

The software maintains cache coherency between the individual boards using multiple advanced coherency algorithms. These complex algorithms operate concurrently on a per-block basis, based on real-time memory activity access patterns. Board local-memory is leveraged together with caching algorithms to minimize the effect of interconnect latencies.

Shared I/O

The virtualization software aggregates I/O resources across all boards into a unified PCI hierarchy and presents them as a common pool of I/O resources to the OS and the application. The OS is able to utilize all the system storage and networking controllers toward providing high-I/O system capabilities.

The Advantages of Aggregation

Ease of Use

Aggregation simplifies scale-deployments by having a single system to manage compared to the complexities involved with managing a cluster. A single system removes the need for cluster file systems, cluster interconnect provisioning, application provisioning and installation and updating multiple operating systems and applications. The use of one operating system instead of one per node results in a significant savings in time and money during installation, as well as in ongoing management costs.

Simplified I/O Architecture

I/O requirements for a scale-out model can be very complex and costly, involving networked storage with accompanying costs related to additional HBAs, and FC switch infrastructure. Aggregation technology consolidates each individual server’s network and storage interfaces. I/O resource consolidation reduces the number of drivers, HBAs, NICs, cables, and switch ports and all the associated maintenance overhead. The user needs fewer I/O devices to purchase, manage and service with increased availability, resiliency and runtime scalability of I/O resources.

Large Memory System

For workloads that require a large contiguous memory, customers have traditionally used the scale-up approach. Aggregation provides a cost-effective alternative to buying expensive and large proprietary shared-memory systems for such workloads. It enables an application requiring large amounts of memory to leverage the memory of multiple systems, and reduce the need to use a hard-drive for swap or scratch space. Application runtime can be dramatically reduced by running simulations with in-core solvers or by using memory instead of swap for large-memory footprint models.

Aggregation thus provides a cost-effective virtual x86 platform with a large shared memory that minimizes the physical infrastructure requirements and can run both distributed applications, as well as applications requiring a large memory footprint at optimal performance on the same physical infrastructure.

Compute-Intensive, Large Core-Count Requirements

For workloads that require a high core count coupled with shared memory, customers have traditionally used proprietary shared-memory systems. Aggregation provides a very cost effective x86 alternative to these expensive and proprietary RISC systems.
Aggregation technology combines memory-bandwidth across boards, as opposed to traditional SMP or NUMA architecture where memory bandwidth decreases as the machine scales. This enables solutions based on aggregation technology to show close-to-linear memory bandwidth scaling, thereby delivering excellent performance for threaded applications.

Improved Utilization

Even in large cluster deployments in data centers, it makes sense to deploy aggregation, since fewer larger nodes mean less cluster complexity and better utilization of the infrastructure due to reduced fragmentation of the resources. An example can be found in the financial services industry, where organizations need to run hundreds or thousands of simulations at once. A common deployment model will involve hundreds of servers, where each will execute a few simulations. In this example, each cluster node is running a single application at 80 percent utilization. By using aggregation to create fewer larger nodes, every four aggregated systems can run another copy of the application, leveraging the underutilized resources and driving an additional 25 percent utilization.

ScaleMP’s vSMP Foundation is an example of the aggregation concept. The company has taken an approach that makes a tradeoff between memory latency and memory bandwidth.

Memory Bandwidth vs. Memory Latency

vSMP Foundation uses caching technologies to provide parallel access to system memory. With vSMP Foundation, data migration and replication are employed to maximize system memory bandwidth. The additional system memory bandwidth is used to mask the backplane latencies. ScaleMP uses standard interconnect technology versus the custom built back planes used in traditional multi-processors. While the backplane latency of the InfiniBand interconnect is higher than traditional multi-processor backplanes, the additional memory bandwidth offsets this higher latency. One of the keys to appreciating vSMP Foundation’s ability to mask backplane latency and provide superior performance is the understanding of the fundamentals behind efficiency in memory management. At its elemental level, efficiency can be defined as:

Efficiency = 1 – (Access x Latency)

Where:

Access represents the number of times a processor has to reach out to memory that is not within the processor cache (i.e., on main memory, requiring access via the backplane).

Latency represents the amount of processor wait time such memory requires each time it is accessed.

The efficiency of a system can be improved by reducing the number of times the processor accesses the backplane or reducing the latency of each access to the backplane. Typically, the access is defined by the nature of the application, and latency is based on the technology of the backplane.

Historically, the industry has improved performance by focusing significant R&D on reducing latency in each new generation of products (backplanes, memory-speed, etc.). The assumption was that the access patterns were driven by the applications and, hence, largely out of the control of the system vendors.

ScaleMP’s basic approach was to replace proprietary chipsets and backplanes with InfiniBand interconnects and reduce the number of times a processor has to access the backplane for memory operations on another physical board.

Non-Uniformed Memory Architecture (NUMA) is a common multi-processor architecture which inherently support system scaling by adding additional system nodes. NUMA drawbacks are result of non-homogenous memory access latency, which require operating system and application awareness. ScaleMP utilizes a combination of NUMA and Cache Only Memory Architecture (COMA) in conjunction with a massive cache (typically 5-10 percent of the system’s RAM), to trade off the backplane latency with the use of redundant RAM for caching. The backplane latency is mitigated using software-driven adaptive caching techniques and achieving better systems economics by leveraging commodity memory costs versus proprietary backplanes and chipsets.

ScaleMP utilizes multiple memory coherency algorithms that are selected based on several aspects of the application behaviors, such as historical memory access pattern, on-the-fly code analysis and I/O behavioral analysis. In essence, in spite of having higher backplane latency versus traditional multi-processor systems, vSMP Foundation techniques for memory access reduction are designed to offset the disadvantage of higher-latency, commodity industry-standard interconnects. With the progress that InfiniBand is making in improving latency from SDR to DDR to QDR, the latency gap between an InfiniBand interconnect and a proprietary interconnect is shrinking.

By leveraging industry-standard processors and systems coupled with industry-standard interconnects, aggregation creates a new paradigm for high performance computing and represents a step toward delivering better performance with lower cost and less complexity. Aggregation overcomes the fundamental limitation of clusters for applications that require large shared memory, and it addresses the barriers many technical computing customers have when it comes to adopting clusters, namely a lack of appropriate IT skills to install and manage them. The drawbacks associated with traditional SMP systems, such as high cost and vendor lock-in, are likewise avoided.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This