New Administration, Congress Aim to Boost Federal R&D

By Michael Feldman

January 21, 2009

With U.S. businesses in full retreat, the new Obama administration and Congress are committed to injecting an enormous stimulus of federal money into the economy. At least some of this seems destined to end up as increased spending on science and technology R&D, and by extension, high performance computing.

That will be welcome news for the tech community, who has been pleading for more funding for basic science research for over a decade. The America COMPETES Act, signed into law in 2007, supported doubling funding for basic research programs in physical sciences, namely nanotechnology, alternative energy and supercomputing. But money was never appropriated at the levels that COMPETES called for. Measured in real dollars, U.S. government spending on physical sciences R&D has generally been on the decline since the 1990s, and even funding for life sciences has been dropping since 2004.

President Obama has repeatedly called for a doubling of federal funding for basic research over ten years. With than in mind, the American Recovery And Reinvestment Act currently before Congress provides for $10 billion toward science facilities, research, and instrumentation (out of a total allocation of $550 billion in government spending, plus $275 billion in tax cuts). The breakdown for the science research funding is as follows:

  • National Science Foundation: $3 billion, including $2 billion for expanding employment opportunities in fundamental science and engineering to meet environmental challenges and to improve global economic competitiveness, $400 million to build major research facilities that perform cutting edge science, $300 million for major research equipment shared by institutions of higher education and other scientists, $200 million to repair and modernize science and engineering research facilities at the nation’s institutions of higher education and other science labs, and $100 million is also included to improve instruction in science, math and engineering.

  • National Institutes of Health Biomedical Research: $2 billion, including $1.5 billion for expanding good jobs in biomedical research to study diseases such as Alzheimer’s, Parkinson’s, cancer, and heart disease — NIH is currently able to fund less than 20 percent of approved applications — and $500 million to implement the repair and improvement strategic plan developed by the NIH for its campuses.

  • University Research Facilities: $1.5 billion for NIH to renovate university research facilities and help them compete for biomedical research grants. The National Science Foundation estimates a maintenance backlog of $3.9 billion in biological science research space. Funds are awarded competitively.

  • Centers for Disease Control and Prevention: $462 million to enable CDC to complete its Buildings and Facilities Master Plan, as well as renovations and construction needs of the National Institute for Occupational Safety and Health.

  • Department of Energy: $1.9 billion for basic research into the physical sciences including high-energy physics, nuclear physics, and fusion energy sciences and improvements to DOE laboratories and scientific facilities. $400 million is for the Advanced Research Project Agency — Energy to support high-risk, high-payoff research into energy sources and energy efficiency.

  • NASA: $600 million, including $400 million to put more scientists to work doing climate change research, including Earth science research recommended by the National Academies, satellite sensors that measure solar radiation critical to understanding climate change, and a thermal infrared sensor to the Landsat Continuing Mapper necessary for water management, particularly in the western states; $150 million for research, development, and demonstration to improve aviation safety and Next Generation air traffic control (NextGen); and $50 million to repair NASA centers damaged by hurricanes and floods last year.

  • Biomedical Advanced Research and Development, Pandemic Flu, and Cyber Security: $900 million to prepare for a pandemic influenza, support advanced development of medical countermeasures for chemical, biological, radiological, and nuclear threats, and for cyber security protections at HHS.

  • National Oceanic and Atmospheric Administration Satellites and Sensors: $600 million for satellite development and acquisitions, including climate sensors and climate modeling.

  • National Institute of Standards and Technology: $300 million for competitive construction grants for research science buildings at colleges, universities, and other research organizations and $100 million to coordinate research efforts of laboratories and national research facilities by setting interoperability standards for manufacturing.

  • Agricultural Research Service: $209 million for agricultural research facilities across the country. ARS has a list of deferred maintenance work at facilities of roughly $315 million.

  • U.S. Geological Survey: $200 million to repair and modernize U.S.G.S. science facilities and equipment, including improvements to laboratories, earthquake monitoring systems, and computing capacity.

If the bill is passed and the money is appropriated as is, that would be a huge boost for these organizations’ research efforts. There’s no telling how much of this would trickle down to HPC infrastructure, programs and jobs since the spending details would ultimately be up to the individual agencies. For the long-term, the more salient issue is whether these increases would be maintained to keep R&D funding on the kind of trajectory called out by the COMPETES Act.

Peter Harsha, the director of Government Affairs at the Computing Research Association, reports that at least the money targeted for R&D infrastructure in the stimulus bill may be a one-time deal:

[I]n our meetings with congressional staff over the last couple of weeks, there has been some concern about managing expectations about the sustainability of any of this funding beyond the stimulus. There are no promises that this stimulus funding will establish a new baseline funding level for these science agencies. There is the possibility that this truly is “one and done.” The report language doesn’t speak to that directly, but seems to suggest that the idea with this influx of research funding in what was thought to be simply an “infrastructure” bill is to reestablish a trajectory towards the doubling targets in the America COMPETES Act. If that’s the case, we should expect that future appropriations bills will start with a funding level of $8 billion for NSF, for example (because $1 billion of the $3 billion increase is for a “one-time” infrastructure investment, while the remaining $2 billion is a research investment), and not revert back to the $6 billion pre-stimulus level. Hard to know exactly what the intent is and it’s hard to reach the appropriations staff to hear it from them directly.

If so, post-stimulus R&D funding will revert to the classic struggle of discretionary spending between budget hawks and doves. But the political winds may indeed be shifting. President Obama’s commitment to boost federally-funded research should find a receptive audience in the Democratic-controlled Congress. In his inaugural speech, the new President pledged to “restore science to its rightful place.” After years of uninspired government support for science and technology, the federal R&D machine that produced the Internet and decoded human genomes may be back in business.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This