Lawrence Livermore Prepares for 20 Petaflop Blue Gene/Q

By Michael Feldman

February 3, 2009

Roadrunner and Jaguar, the DOE supercomputers that launched the petaflop era last year, will soon be eclipsed by new machines more than ten times as powerful. IBM and the US National Nuclear Security Administration (NNSA) announced on Tuesday that in 2011 Lawrence Livermore National Laboratory will install a 20 petaflop system to provide computational support for the country’s aging nuclear weapons.

Building on its Blue Gene heritage, IBM will deliver “Dawn,” a 500 teraflop Blue Gene/P system in the first quarter of this year, followed by “Sequoia,” a 20 petaflop next-generation Blue Gene/Q machine for 2011. Sequoia is expected to officially go online in 2012. The new machines will take over Lawrence Livermore’s weapon simulation codes that are being maintained under the Advanced Simulation and Computing (ASC) Program. Currently this work is being done with the existing capability supercomputers at the lab: the 100 teraflop ASC Purple and the 600 teraflop Blue Gene/L.

Dawn will act as an interim platform for porting and scaling the weapons codes. Once the Blue Gene/Q super comes online, those codes will be moved over to the bigger machine for production. The Dawn machine is in the process of being built right now, with about half of the machine already wired together at Lawrence Livermore. The lab is planning on getting the rest of the hardware over the next few months, with system acceptance scheduled for April.

Using Dawn as a stepping stone to Sequoia is possible since, unlike Blue Gene/L, both Blue Gene/P and Blue Gene/Q support node-level cache coherency, which allows for SMP-style programming. Especially for the weapons code, mapping one MPI task per core would be a real challenge, but going to a mixed SMP-message passing model — shared-memory parallelism within the nodes and distributed parallelism across the nodes — is much more practical.

Not only will Sequoia be more than ten times as powerful as the current crop of petaflop supercomputers, its energy efficiency will be much improved. According to IBM Deep Computing VP Dave Turek, Sequoia will consume around 6 megawatts, yielding an energy efficiency ratio of over 3,000 MFLOPS/watt*. That represents a 7X improvement over the Blue Gene/P generation (440 MFLOPS/watt*), and is even better than the Cell-based Roadrunner system at Los Alamos (587 MFLOPS/watt*). For a starker comparison, the 1.6 petaflop Opteron-based Jaguar supercomputer installed at Oak Ridge National Laboratory uses about 8.5 megawatts (188 MFLOPS/watt*).

When Sequoia arrives in the first half of 2011, space is going to be at a premium in the lab’s Terascale Simulation Facility, (which already houses ASC Purple and the Blue Gene/L system) but power is going to be the real problem. Although both new Blue Genes are much more energy efficient than their predecessors, the lab is planning to more than double the facility’s power — from 12.5 to 30 megawatts.

IBM is not releasing low-level details of the Blue Gene/Q architecture. However, since Sequoia will be composed of 98,304 compute nodes and contain a total of 1.6 million cores, one can surmise that a Blue Gene/Q node will contain 16 cores. Whether this is implemented as one 16-core chip or two 8-core chips (or even four quad-core chips) remains to be seen. Since Sequoia will sport 1.6 petabytes of memory, each node stands to have 16 GB. The current Blue Gene/P technology offers 4 cores and 4 GB of main memory per node.

At 20 petaflops, Sequoia will be 160 times as powerful as Lawrence Livermore’s ASC Purple and 17 times as powerful as its current Blue Gene/L, giving scientists a lot more computing cycles for weapons simulations and basic science research. “It’s been an interesting journey,” notes Turek. “When you think back to when the ASCI [now ASC] program was launched in the 90s and what the aspirations were for FLOPs back then versus where we are today, I think we’ve exceeded everyone’s expectations.”

Indeed. Considering the original supercomputers under the ASC program (i.e., ASCI Blue Pacific at 3.9 teraflops and ASCI White at 12.3 teraflops) don’t even show up on today’s TOP500 list, the new systems represent a completely different class of capability for the stockpile stewardship program. Mark Seager, who manages the Platforms Program for the ASC Program at Lawrence Livermore and led the team that wrote the RFP for the new machines, says Sequoia will enable a new level of predictive science.

Toward that end, the lab will be enhancing the existing weapons codes with “uncertainty quantification” (UQ) methods. Seager says this is a relatively new branch of science that allows researchers to apply a lot of physics parameters to the simulations. With this model, researchers will be able to quantify the errors associated with simulation results. Once the largest sources of errors are known, the models can be systematically refined to enhance the predictive capabilities. Unfortunately, UQ is computationally expensive, so only limited numbers of simulations can be attempted on existing hardware.

“On [ASC] Purple we were able to do a UQ study on one weapons system in about a month with approximately 4,400 calculations, some of which took up the maximum practical size of the machine, which is 8,192 MPI tasks,” explains Seager. “With Sequoia, multiply that capability by somewhere between 12 and 24X.”

But MPI applications tend to be very sensitive to hardware or software failures, so completing a fault-free run is going to be challenging at the scale of a million-plus cores. To address the resiliency issue, Seager says they’ll be applying “ensemble” calculations to their codes. In the ensemble method, the same algorithm can be run thousands of time with different sets of parameters. Using this approach, isolated failures on a small number of calculations can be tolerated without sacrificing the integrity of the whole application. It’s analogous to the way many Web applications like search engines operate today.

Sequoia’s second mission will be to support basic science at scale, where scientists are looking to achieve 20 to 50 times the capability that is provided by the existing Blue Gene/L system. Along with the extra capability Sequoia will provide the weapons codes migrating from ASC Purple, Lawrence Livermore stands to leapfrog rather decisively into the petascale era. Says Seager: “It is probably the single largest jump in computing power that the lab has ever seen.”

*The original version of this article incorrectly expressed the energy efficiency ratios at FLOPS/watt, instead of MFLOPS/watt.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This