Lawrence Livermore Prepares for 20 Petaflop Blue Gene/Q

By Michael Feldman

February 3, 2009

Roadrunner and Jaguar, the DOE supercomputers that launched the petaflop era last year, will soon be eclipsed by new machines more than ten times as powerful. IBM and the US National Nuclear Security Administration (NNSA) announced on Tuesday that in 2011 Lawrence Livermore National Laboratory will install a 20 petaflop system to provide computational support for the country’s aging nuclear weapons.

Building on its Blue Gene heritage, IBM will deliver “Dawn,” a 500 teraflop Blue Gene/P system in the first quarter of this year, followed by “Sequoia,” a 20 petaflop next-generation Blue Gene/Q machine for 2011. Sequoia is expected to officially go online in 2012. The new machines will take over Lawrence Livermore’s weapon simulation codes that are being maintained under the Advanced Simulation and Computing (ASC) Program. Currently this work is being done with the existing capability supercomputers at the lab: the 100 teraflop ASC Purple and the 600 teraflop Blue Gene/L.

Dawn will act as an interim platform for porting and scaling the weapons codes. Once the Blue Gene/Q super comes online, those codes will be moved over to the bigger machine for production. The Dawn machine is in the process of being built right now, with about half of the machine already wired together at Lawrence Livermore. The lab is planning on getting the rest of the hardware over the next few months, with system acceptance scheduled for April.

Using Dawn as a stepping stone to Sequoia is possible since, unlike Blue Gene/L, both Blue Gene/P and Blue Gene/Q support node-level cache coherency, which allows for SMP-style programming. Especially for the weapons code, mapping one MPI task per core would be a real challenge, but going to a mixed SMP-message passing model — shared-memory parallelism within the nodes and distributed parallelism across the nodes — is much more practical.

Not only will Sequoia be more than ten times as powerful as the current crop of petaflop supercomputers, its energy efficiency will be much improved. According to IBM Deep Computing VP Dave Turek, Sequoia will consume around 6 megawatts, yielding an energy efficiency ratio of over 3,000 MFLOPS/watt*. That represents a 7X improvement over the Blue Gene/P generation (440 MFLOPS/watt*), and is even better than the Cell-based Roadrunner system at Los Alamos (587 MFLOPS/watt*). For a starker comparison, the 1.6 petaflop Opteron-based Jaguar supercomputer installed at Oak Ridge National Laboratory uses about 8.5 megawatts (188 MFLOPS/watt*).

When Sequoia arrives in the first half of 2011, space is going to be at a premium in the lab’s Terascale Simulation Facility, (which already houses ASC Purple and the Blue Gene/L system) but power is going to be the real problem. Although both new Blue Genes are much more energy efficient than their predecessors, the lab is planning to more than double the facility’s power — from 12.5 to 30 megawatts.

IBM is not releasing low-level details of the Blue Gene/Q architecture. However, since Sequoia will be composed of 98,304 compute nodes and contain a total of 1.6 million cores, one can surmise that a Blue Gene/Q node will contain 16 cores. Whether this is implemented as one 16-core chip or two 8-core chips (or even four quad-core chips) remains to be seen. Since Sequoia will sport 1.6 petabytes of memory, each node stands to have 16 GB. The current Blue Gene/P technology offers 4 cores and 4 GB of main memory per node.

At 20 petaflops, Sequoia will be 160 times as powerful as Lawrence Livermore’s ASC Purple and 17 times as powerful as its current Blue Gene/L, giving scientists a lot more computing cycles for weapons simulations and basic science research. “It’s been an interesting journey,” notes Turek. “When you think back to when the ASCI [now ASC] program was launched in the 90s and what the aspirations were for FLOPs back then versus where we are today, I think we’ve exceeded everyone’s expectations.”

Indeed. Considering the original supercomputers under the ASC program (i.e., ASCI Blue Pacific at 3.9 teraflops and ASCI White at 12.3 teraflops) don’t even show up on today’s TOP500 list, the new systems represent a completely different class of capability for the stockpile stewardship program. Mark Seager, who manages the Platforms Program for the ASC Program at Lawrence Livermore and led the team that wrote the RFP for the new machines, says Sequoia will enable a new level of predictive science.

Toward that end, the lab will be enhancing the existing weapons codes with “uncertainty quantification” (UQ) methods. Seager says this is a relatively new branch of science that allows researchers to apply a lot of physics parameters to the simulations. With this model, researchers will be able to quantify the errors associated with simulation results. Once the largest sources of errors are known, the models can be systematically refined to enhance the predictive capabilities. Unfortunately, UQ is computationally expensive, so only limited numbers of simulations can be attempted on existing hardware.

“On [ASC] Purple we were able to do a UQ study on one weapons system in about a month with approximately 4,400 calculations, some of which took up the maximum practical size of the machine, which is 8,192 MPI tasks,” explains Seager. “With Sequoia, multiply that capability by somewhere between 12 and 24X.”

But MPI applications tend to be very sensitive to hardware or software failures, so completing a fault-free run is going to be challenging at the scale of a million-plus cores. To address the resiliency issue, Seager says they’ll be applying “ensemble” calculations to their codes. In the ensemble method, the same algorithm can be run thousands of time with different sets of parameters. Using this approach, isolated failures on a small number of calculations can be tolerated without sacrificing the integrity of the whole application. It’s analogous to the way many Web applications like search engines operate today.

Sequoia’s second mission will be to support basic science at scale, where scientists are looking to achieve 20 to 50 times the capability that is provided by the existing Blue Gene/L system. Along with the extra capability Sequoia will provide the weapons codes migrating from ASC Purple, Lawrence Livermore stands to leapfrog rather decisively into the petascale era. Says Seager: “It is probably the single largest jump in computing power that the lab has ever seen.”

*The original version of this article incorrectly expressed the energy efficiency ratios at FLOPS/watt, instead of MFLOPS/watt.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire