Lawrence Livermore Prepares for 20 Petaflop Blue Gene/Q

By Michael Feldman

February 3, 2009

Roadrunner and Jaguar, the DOE supercomputers that launched the petaflop era last year, will soon be eclipsed by new machines more than ten times as powerful. IBM and the US National Nuclear Security Administration (NNSA) announced on Tuesday that in 2011 Lawrence Livermore National Laboratory will install a 20 petaflop system to provide computational support for the country’s aging nuclear weapons.

Building on its Blue Gene heritage, IBM will deliver “Dawn,” a 500 teraflop Blue Gene/P system in the first quarter of this year, followed by “Sequoia,” a 20 petaflop next-generation Blue Gene/Q machine for 2011. Sequoia is expected to officially go online in 2012. The new machines will take over Lawrence Livermore’s weapon simulation codes that are being maintained under the Advanced Simulation and Computing (ASC) Program. Currently this work is being done with the existing capability supercomputers at the lab: the 100 teraflop ASC Purple and the 600 teraflop Blue Gene/L.

Dawn will act as an interim platform for porting and scaling the weapons codes. Once the Blue Gene/Q super comes online, those codes will be moved over to the bigger machine for production. The Dawn machine is in the process of being built right now, with about half of the machine already wired together at Lawrence Livermore. The lab is planning on getting the rest of the hardware over the next few months, with system acceptance scheduled for April.

Using Dawn as a stepping stone to Sequoia is possible since, unlike Blue Gene/L, both Blue Gene/P and Blue Gene/Q support node-level cache coherency, which allows for SMP-style programming. Especially for the weapons code, mapping one MPI task per core would be a real challenge, but going to a mixed SMP-message passing model — shared-memory parallelism within the nodes and distributed parallelism across the nodes — is much more practical.

Not only will Sequoia be more than ten times as powerful as the current crop of petaflop supercomputers, its energy efficiency will be much improved. According to IBM Deep Computing VP Dave Turek, Sequoia will consume around 6 megawatts, yielding an energy efficiency ratio of over 3,000 MFLOPS/watt*. That represents a 7X improvement over the Blue Gene/P generation (440 MFLOPS/watt*), and is even better than the Cell-based Roadrunner system at Los Alamos (587 MFLOPS/watt*). For a starker comparison, the 1.6 petaflop Opteron-based Jaguar supercomputer installed at Oak Ridge National Laboratory uses about 8.5 megawatts (188 MFLOPS/watt*).

When Sequoia arrives in the first half of 2011, space is going to be at a premium in the lab’s Terascale Simulation Facility, (which already houses ASC Purple and the Blue Gene/L system) but power is going to be the real problem. Although both new Blue Genes are much more energy efficient than their predecessors, the lab is planning to more than double the facility’s power — from 12.5 to 30 megawatts.

IBM is not releasing low-level details of the Blue Gene/Q architecture. However, since Sequoia will be composed of 98,304 compute nodes and contain a total of 1.6 million cores, one can surmise that a Blue Gene/Q node will contain 16 cores. Whether this is implemented as one 16-core chip or two 8-core chips (or even four quad-core chips) remains to be seen. Since Sequoia will sport 1.6 petabytes of memory, each node stands to have 16 GB. The current Blue Gene/P technology offers 4 cores and 4 GB of main memory per node.

At 20 petaflops, Sequoia will be 160 times as powerful as Lawrence Livermore’s ASC Purple and 17 times as powerful as its current Blue Gene/L, giving scientists a lot more computing cycles for weapons simulations and basic science research. “It’s been an interesting journey,” notes Turek. “When you think back to when the ASCI [now ASC] program was launched in the 90s and what the aspirations were for FLOPs back then versus where we are today, I think we’ve exceeded everyone’s expectations.”

Indeed. Considering the original supercomputers under the ASC program (i.e., ASCI Blue Pacific at 3.9 teraflops and ASCI White at 12.3 teraflops) don’t even show up on today’s TOP500 list, the new systems represent a completely different class of capability for the stockpile stewardship program. Mark Seager, who manages the Platforms Program for the ASC Program at Lawrence Livermore and led the team that wrote the RFP for the new machines, says Sequoia will enable a new level of predictive science.

Toward that end, the lab will be enhancing the existing weapons codes with “uncertainty quantification” (UQ) methods. Seager says this is a relatively new branch of science that allows researchers to apply a lot of physics parameters to the simulations. With this model, researchers will be able to quantify the errors associated with simulation results. Once the largest sources of errors are known, the models can be systematically refined to enhance the predictive capabilities. Unfortunately, UQ is computationally expensive, so only limited numbers of simulations can be attempted on existing hardware.

“On [ASC] Purple we were able to do a UQ study on one weapons system in about a month with approximately 4,400 calculations, some of which took up the maximum practical size of the machine, which is 8,192 MPI tasks,” explains Seager. “With Sequoia, multiply that capability by somewhere between 12 and 24X.”

But MPI applications tend to be very sensitive to hardware or software failures, so completing a fault-free run is going to be challenging at the scale of a million-plus cores. To address the resiliency issue, Seager says they’ll be applying “ensemble” calculations to their codes. In the ensemble method, the same algorithm can be run thousands of time with different sets of parameters. Using this approach, isolated failures on a small number of calculations can be tolerated without sacrificing the integrity of the whole application. It’s analogous to the way many Web applications like search engines operate today.

Sequoia’s second mission will be to support basic science at scale, where scientists are looking to achieve 20 to 50 times the capability that is provided by the existing Blue Gene/L system. Along with the extra capability Sequoia will provide the weapons codes migrating from ASC Purple, Lawrence Livermore stands to leapfrog rather decisively into the petascale era. Says Seager: “It is probably the single largest jump in computing power that the lab has ever seen.”

*The original version of this article incorrectly expressed the energy efficiency ratios at FLOPS/watt, instead of MFLOPS/watt.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This