Lawrence Livermore Prepares for 20 Petaflop Blue Gene/Q

By Michael Feldman

February 3, 2009

Roadrunner and Jaguar, the DOE supercomputers that launched the petaflop era last year, will soon be eclipsed by new machines more than ten times as powerful. IBM and the US National Nuclear Security Administration (NNSA) announced on Tuesday that in 2011 Lawrence Livermore National Laboratory will install a 20 petaflop system to provide computational support for the country’s aging nuclear weapons.

Building on its Blue Gene heritage, IBM will deliver “Dawn,” a 500 teraflop Blue Gene/P system in the first quarter of this year, followed by “Sequoia,” a 20 petaflop next-generation Blue Gene/Q machine for 2011. Sequoia is expected to officially go online in 2012. The new machines will take over Lawrence Livermore’s weapon simulation codes that are being maintained under the Advanced Simulation and Computing (ASC) Program. Currently this work is being done with the existing capability supercomputers at the lab: the 100 teraflop ASC Purple and the 600 teraflop Blue Gene/L.

Dawn will act as an interim platform for porting and scaling the weapons codes. Once the Blue Gene/Q super comes online, those codes will be moved over to the bigger machine for production. The Dawn machine is in the process of being built right now, with about half of the machine already wired together at Lawrence Livermore. The lab is planning on getting the rest of the hardware over the next few months, with system acceptance scheduled for April.

Using Dawn as a stepping stone to Sequoia is possible since, unlike Blue Gene/L, both Blue Gene/P and Blue Gene/Q support node-level cache coherency, which allows for SMP-style programming. Especially for the weapons code, mapping one MPI task per core would be a real challenge, but going to a mixed SMP-message passing model — shared-memory parallelism within the nodes and distributed parallelism across the nodes — is much more practical.

Not only will Sequoia be more than ten times as powerful as the current crop of petaflop supercomputers, its energy efficiency will be much improved. According to IBM Deep Computing VP Dave Turek, Sequoia will consume around 6 megawatts, yielding an energy efficiency ratio of over 3,000 MFLOPS/watt*. That represents a 7X improvement over the Blue Gene/P generation (440 MFLOPS/watt*), and is even better than the Cell-based Roadrunner system at Los Alamos (587 MFLOPS/watt*). For a starker comparison, the 1.6 petaflop Opteron-based Jaguar supercomputer installed at Oak Ridge National Laboratory uses about 8.5 megawatts (188 MFLOPS/watt*).

When Sequoia arrives in the first half of 2011, space is going to be at a premium in the lab’s Terascale Simulation Facility, (which already houses ASC Purple and the Blue Gene/L system) but power is going to be the real problem. Although both new Blue Genes are much more energy efficient than their predecessors, the lab is planning to more than double the facility’s power — from 12.5 to 30 megawatts.

IBM is not releasing low-level details of the Blue Gene/Q architecture. However, since Sequoia will be composed of 98,304 compute nodes and contain a total of 1.6 million cores, one can surmise that a Blue Gene/Q node will contain 16 cores. Whether this is implemented as one 16-core chip or two 8-core chips (or even four quad-core chips) remains to be seen. Since Sequoia will sport 1.6 petabytes of memory, each node stands to have 16 GB. The current Blue Gene/P technology offers 4 cores and 4 GB of main memory per node.

At 20 petaflops, Sequoia will be 160 times as powerful as Lawrence Livermore’s ASC Purple and 17 times as powerful as its current Blue Gene/L, giving scientists a lot more computing cycles for weapons simulations and basic science research. “It’s been an interesting journey,” notes Turek. “When you think back to when the ASCI [now ASC] program was launched in the 90s and what the aspirations were for FLOPs back then versus where we are today, I think we’ve exceeded everyone’s expectations.”

Indeed. Considering the original supercomputers under the ASC program (i.e., ASCI Blue Pacific at 3.9 teraflops and ASCI White at 12.3 teraflops) don’t even show up on today’s TOP500 list, the new systems represent a completely different class of capability for the stockpile stewardship program. Mark Seager, who manages the Platforms Program for the ASC Program at Lawrence Livermore and led the team that wrote the RFP for the new machines, says Sequoia will enable a new level of predictive science.

Toward that end, the lab will be enhancing the existing weapons codes with “uncertainty quantification” (UQ) methods. Seager says this is a relatively new branch of science that allows researchers to apply a lot of physics parameters to the simulations. With this model, researchers will be able to quantify the errors associated with simulation results. Once the largest sources of errors are known, the models can be systematically refined to enhance the predictive capabilities. Unfortunately, UQ is computationally expensive, so only limited numbers of simulations can be attempted on existing hardware.

“On [ASC] Purple we were able to do a UQ study on one weapons system in about a month with approximately 4,400 calculations, some of which took up the maximum practical size of the machine, which is 8,192 MPI tasks,” explains Seager. “With Sequoia, multiply that capability by somewhere between 12 and 24X.”

But MPI applications tend to be very sensitive to hardware or software failures, so completing a fault-free run is going to be challenging at the scale of a million-plus cores. To address the resiliency issue, Seager says they’ll be applying “ensemble” calculations to their codes. In the ensemble method, the same algorithm can be run thousands of time with different sets of parameters. Using this approach, isolated failures on a small number of calculations can be tolerated without sacrificing the integrity of the whole application. It’s analogous to the way many Web applications like search engines operate today.

Sequoia’s second mission will be to support basic science at scale, where scientists are looking to achieve 20 to 50 times the capability that is provided by the existing Blue Gene/L system. Along with the extra capability Sequoia will provide the weapons codes migrating from ASC Purple, Lawrence Livermore stands to leapfrog rather decisively into the petascale era. Says Seager: “It is probably the single largest jump in computing power that the lab has ever seen.”

*The original version of this article incorrectly expressed the energy efficiency ratios at FLOPS/watt, instead of MFLOPS/watt.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This