Berkeley Releases Cloud Computing Study

By Nicole Hemsoth

February 12, 2009

Researchers at the Reliable Adaptive Distributed Systems Laboratory (RAD Lab) at UC Berkeley have released a 23-page white paper, Above the Clouds [PDF], that provides an in-depth analysis of the emerging cloud computing model. The paper is one of the first academic treatises on the subject to offer a critical profile of the cloud computing landscape today.

We asked two of the paper’s authors, David Patterson, Professor in Computer Science at UC Berkeley, and Armando Fox, Adjunct Associate Professor at UC Berkeley’s RAD Lab, to elaborate on the findings and offer their perspective on how the cloud will impact high performance computing.

HPCwire: Cloud computing has come to mean a variety of things. For the purpose of our discussion here, how would you define it?

David Patterson: Cloud computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the datacenters that provide those services. The services themselves have long been referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will call a cloud. When a cloud is made available in a pay-as-you-go manner to the general public, we call it a “public cloud”; the service being sold is utility computing. We use the term “private cloud” to refer to internal datacenters of a business or other organization, not made available to the general public. Thus, cloud computing is the sum of SaaS and utility computing, but does not include private clouds.

We don’t use terms such as “X as a service” (XaaS); values of X we have seen include infrastructure, hardware, and platform, but we were unable to agree, even among ourselves, what the precise differences among them might be.

Armando Fox: The key ingredient is having tremendous computing resources instantly available on-tap with no advance arrangements needed and pay-as-you-go billing. Especially relevant is the fact that once you release unused resources, you don’t have to pay for them anymore. This property of “elasticity” shifts many risks from the users of that equipment to the provider of the equipment, creating new economic models that can change the way that startups, researchers, and even established enterprises think about IT spending.

HPCwire: Cloud computing is arguably the biggest paradigm shift in IT since the PC. Although similar concepts like utility computing and grid computing have been around for some time, they never attained widespread commercial success. What pieces of technology have come together to make cloud computing viable today?

Fox: While there are many technical factors, we believe the most important is the existence of extremely large datacenters built from tens of thousands of commodity computers. It turns out also that there are cost advantages of a factor of five to seven in capitalizing a datacenter at this scale compared to, say, a medium-sized enterprise datacenter of hundreds of computers. And the huge growth of the Internet drove companies such as Google, Amazon, eBay, and others to build such datacenters, to develop infrastructure software for them, such as Google File System or Amazon Dynamo, and to develop the operational expertise to armor them against the hostile environment of the public Internet.

Patterson: These technical advances were matched by a business model that offers three key features: 1) The illusion of infinite computing resources available on demand; 2) The elimination of an up-front commitment by cloud users, thereby allowing companies to start small; and 3) The ability to pay for use of computing resources on a short-term basis as needed and to release them when unneeded. Past efforts at utility computing failed because one or two of these three critical characteristics were missing. For example, Intel Computing Services in 2000-2001 required negotiating a contract and longer-term use than per hour.

Alas, grid computing created protocols that offered shared computation and storage over long distances and did not lead to a software environment that grew beyond the HPC community.

HPCwire: There are some prominent people in the industry like Richard Stallman — quoted in the paper — who portray cloud services as marketing hype and who are wary of becoming dependent on cloud and service providers. Is this just resistance to new paradigms or do people like Stallman have a valid point?

Fox: While we believe that cloud computing is definitely more than just “marketing hype,” we agree that the uncertainty of having one’s data and applications “locked in the cloud” may be a potential obstacle to cloud adoption. As we describe in the paper, cloud offerings may differ in the level of management and functionality offered in the cloud. For example, Amazon’s offering relies heavily on the appeal of a robust open-source software ecosystem and provides relatively little in the way of “built-in” functionality; whereas, Microsoft Azure allows deployed applications to run in a managed .NET environment and make use of the .NET framework and libraries, making those applications (and potentially, the data they manage) more difficult to move to another cloud provider that might not offer .NET.

Patterson: We think there is a potential danger to business continuity if you are dependent on a single cloud computing provider. We argue that such concerns can be addressed by standardizing APIs so that multiple providers can offer the same service, so that cloud computing users can move their application if a provider offers poor service or goes out of business.

The obvious fear is that this would lead to a “race-to-the-bottom” and would flatten the profits of cloud computing providers. We offer two arguments to allay this fear. First, the quality of a service matters as well as the price, so customers will not necessarily jump to the lowest cost service. Some Internet service providers today cost a factor of ten more than others because they are more dependable and offer extra services to improve usability. Second, standardization of APIs enables a new usage model in which the same software infrastructure can be used in a local datacenter and in a public cloud. Such an option could enable “surge computing,” in which the public cloud is used to capture the extra tasks that cannot be easily run in the datacenter (or private cloud) due to temporarily heavy workloads. We think surge computing could significantly expand the size of the cloud computing market.

HPCwire: The paper lists ten obstacles to cloud computing. Can you point to one or two that seem the most important overall, and also for high performance computing in particular?

Fox: It was really hard to rank-order these, and even the order in the paper is only a partial order. But we all agreed that cloud computing needs standardized APIs that would work across cloud vendors. This would help address TWO obstacles, namely maintaining high availability and preventing data lock-in. As far as technical obstacles, we observed that just as in the past, the cost of long-haul network bandwidth is falling more slowly than all other hardware costs, so we would like to see novel ways that cloud providers could address this high cost of data transfer, such as allowing customers to FedEx a box of disks directly to the cloud datacenter.

For HPC, we think some basic software infrastructure, such as gang scheduling for clouds, would help a lot; but in general, the HPC community has not had to go through the process of re-architecting software that the Web community went through in the 90s. We think there are plenty of opportunities for innovation if HPC steps up to the plate, and an early demonstration would go a long way toward jump starting that area. We’re discussing some possibilities at the Berkeley Par Lab, just upstairs from the RAD Lab.

HPCwire: The paper also describes some new application opportunities. Can you outline these and talk about why they are particularly suitable for cloud computing?

Fox: A major new area is allowing desktop apps to extend seamlessly into the cloud; for example, the popular analysis software MATLAB and Mathematica both support this now. Also, because of the “cost associativity” of the cloud — using 1,000 computers for an hour is the same price as one computer for 1,000 hours — it is great for apps that parallelize well, like document conversion, photo or video rendering, and so on. Of course, because of the relatively high cost of data transfer, the key is applications for which a lot of computing can be done on each byte transferred into the cloud — an observation made by Jim Gray in 2003 — and for which the latency to transfer that data is small compared to the time during which the data will remain “useful” in the cloud.

We also see the cloud supporting surge computing, where a private datacenter can temporarily overflow into a public cloud to support unexpected surges in workload.

HPCwire: Where do you think cloud computing will fit into the HPC application space?

Patterson: If technical issues like gang scheduling of VMs and higher network bandwidth within the datacenter are addressed, we think many users of HPC applications would love to take advantage of the cloud’s new cost associativity: no extra charge for using 20 times as many computers to get your results back in 1/20th the time. We’re conditioned to buying a set of computers and then trying to keep them uniformly busy. This elasticity of resources, without paying a premium for large scale, is unprecedented, so it will take a while for clever people to exploit this opportunity.

When HPC users don’t have to pay the costs of operating their computers — someone else pays for the building space, electricity, air conditioning, and so — they may conclude that on average they can get their work done for less than commercial cloud computing, but that seems more like bad accounting than good science.

HPCwire: How does future hardware and software need to be built to take advantage of the cloud model?

Fox: For software, one key approach is focusing on horizontal scalability — the ability to accommodate more users by adding more servers. At the level of storage systems and databases, this remains elusive, as evidenced by the various offerings such as Google AppEngine’s MegaStore, Amazon’s S3 and SimpleDB, and other scalable storage services. Also, to take advantage of elasticity means that software must automatically be able to adapt to unexpected workload changes, machine failures, and eventually, even whole-datacenter outages. Looking at the spectrum of clouds today, Amazon doesn’t provide any built-in service like this (though third parties such as RightScale are stepping in to fill that gap) but allows the developer to architect anything he wants; whereas, Google AppEngine severely constrains the software architecture of your app, but in return you get a lot of that automatic management for free.

Patterson: Hardware systems should be designed at the scale of a container (at least a dozen racks), which will be the minimum purchase size. Cost of operation will match performance and cost of purchase in importance, rewarding energy proportionality, which puts idle portions of the memory, disk and network into low power mode. Processors should work well with VMs; flash memory should be added to the memory hierarchy; and LAN switches and WAN routers must improve in bandwidth and cost.

—–

For more discussion of Berkeley’s cloud computing research, go to the Above the Clouds Web site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This