Berkeley Releases Cloud Computing Study

By Nicole Hemsoth

February 12, 2009

Researchers at the Reliable Adaptive Distributed Systems Laboratory (RAD Lab) at UC Berkeley have released a 23-page white paper, Above the Clouds [PDF], that provides an in-depth analysis of the emerging cloud computing model. The paper is one of the first academic treatises on the subject to offer a critical profile of the cloud computing landscape today.

We asked two of the paper’s authors, David Patterson, Professor in Computer Science at UC Berkeley, and Armando Fox, Adjunct Associate Professor at UC Berkeley’s RAD Lab, to elaborate on the findings and offer their perspective on how the cloud will impact high performance computing.

HPCwire: Cloud computing has come to mean a variety of things. For the purpose of our discussion here, how would you define it?

David Patterson: Cloud computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the datacenters that provide those services. The services themselves have long been referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will call a cloud. When a cloud is made available in a pay-as-you-go manner to the general public, we call it a “public cloud”; the service being sold is utility computing. We use the term “private cloud” to refer to internal datacenters of a business or other organization, not made available to the general public. Thus, cloud computing is the sum of SaaS and utility computing, but does not include private clouds.

We don’t use terms such as “X as a service” (XaaS); values of X we have seen include infrastructure, hardware, and platform, but we were unable to agree, even among ourselves, what the precise differences among them might be.

Armando Fox: The key ingredient is having tremendous computing resources instantly available on-tap with no advance arrangements needed and pay-as-you-go billing. Especially relevant is the fact that once you release unused resources, you don’t have to pay for them anymore. This property of “elasticity” shifts many risks from the users of that equipment to the provider of the equipment, creating new economic models that can change the way that startups, researchers, and even established enterprises think about IT spending.

HPCwire: Cloud computing is arguably the biggest paradigm shift in IT since the PC. Although similar concepts like utility computing and grid computing have been around for some time, they never attained widespread commercial success. What pieces of technology have come together to make cloud computing viable today?

Fox: While there are many technical factors, we believe the most important is the existence of extremely large datacenters built from tens of thousands of commodity computers. It turns out also that there are cost advantages of a factor of five to seven in capitalizing a datacenter at this scale compared to, say, a medium-sized enterprise datacenter of hundreds of computers. And the huge growth of the Internet drove companies such as Google, Amazon, eBay, and others to build such datacenters, to develop infrastructure software for them, such as Google File System or Amazon Dynamo, and to develop the operational expertise to armor them against the hostile environment of the public Internet.

Patterson: These technical advances were matched by a business model that offers three key features: 1) The illusion of infinite computing resources available on demand; 2) The elimination of an up-front commitment by cloud users, thereby allowing companies to start small; and 3) The ability to pay for use of computing resources on a short-term basis as needed and to release them when unneeded. Past efforts at utility computing failed because one or two of these three critical characteristics were missing. For example, Intel Computing Services in 2000-2001 required negotiating a contract and longer-term use than per hour.

Alas, grid computing created protocols that offered shared computation and storage over long distances and did not lead to a software environment that grew beyond the HPC community.

HPCwire: There are some prominent people in the industry like Richard Stallman — quoted in the paper — who portray cloud services as marketing hype and who are wary of becoming dependent on cloud and service providers. Is this just resistance to new paradigms or do people like Stallman have a valid point?

Fox: While we believe that cloud computing is definitely more than just “marketing hype,” we agree that the uncertainty of having one’s data and applications “locked in the cloud” may be a potential obstacle to cloud adoption. As we describe in the paper, cloud offerings may differ in the level of management and functionality offered in the cloud. For example, Amazon’s offering relies heavily on the appeal of a robust open-source software ecosystem and provides relatively little in the way of “built-in” functionality; whereas, Microsoft Azure allows deployed applications to run in a managed .NET environment and make use of the .NET framework and libraries, making those applications (and potentially, the data they manage) more difficult to move to another cloud provider that might not offer .NET.

Patterson: We think there is a potential danger to business continuity if you are dependent on a single cloud computing provider. We argue that such concerns can be addressed by standardizing APIs so that multiple providers can offer the same service, so that cloud computing users can move their application if a provider offers poor service or goes out of business.

The obvious fear is that this would lead to a “race-to-the-bottom” and would flatten the profits of cloud computing providers. We offer two arguments to allay this fear. First, the quality of a service matters as well as the price, so customers will not necessarily jump to the lowest cost service. Some Internet service providers today cost a factor of ten more than others because they are more dependable and offer extra services to improve usability. Second, standardization of APIs enables a new usage model in which the same software infrastructure can be used in a local datacenter and in a public cloud. Such an option could enable “surge computing,” in which the public cloud is used to capture the extra tasks that cannot be easily run in the datacenter (or private cloud) due to temporarily heavy workloads. We think surge computing could significantly expand the size of the cloud computing market.

HPCwire: The paper lists ten obstacles to cloud computing. Can you point to one or two that seem the most important overall, and also for high performance computing in particular?

Fox: It was really hard to rank-order these, and even the order in the paper is only a partial order. But we all agreed that cloud computing needs standardized APIs that would work across cloud vendors. This would help address TWO obstacles, namely maintaining high availability and preventing data lock-in. As far as technical obstacles, we observed that just as in the past, the cost of long-haul network bandwidth is falling more slowly than all other hardware costs, so we would like to see novel ways that cloud providers could address this high cost of data transfer, such as allowing customers to FedEx a box of disks directly to the cloud datacenter.

For HPC, we think some basic software infrastructure, such as gang scheduling for clouds, would help a lot; but in general, the HPC community has not had to go through the process of re-architecting software that the Web community went through in the 90s. We think there are plenty of opportunities for innovation if HPC steps up to the plate, and an early demonstration would go a long way toward jump starting that area. We’re discussing some possibilities at the Berkeley Par Lab, just upstairs from the RAD Lab.

HPCwire: The paper also describes some new application opportunities. Can you outline these and talk about why they are particularly suitable for cloud computing?

Fox: A major new area is allowing desktop apps to extend seamlessly into the cloud; for example, the popular analysis software MATLAB and Mathematica both support this now. Also, because of the “cost associativity” of the cloud — using 1,000 computers for an hour is the same price as one computer for 1,000 hours — it is great for apps that parallelize well, like document conversion, photo or video rendering, and so on. Of course, because of the relatively high cost of data transfer, the key is applications for which a lot of computing can be done on each byte transferred into the cloud — an observation made by Jim Gray in 2003 — and for which the latency to transfer that data is small compared to the time during which the data will remain “useful” in the cloud.

We also see the cloud supporting surge computing, where a private datacenter can temporarily overflow into a public cloud to support unexpected surges in workload.

HPCwire: Where do you think cloud computing will fit into the HPC application space?

Patterson: If technical issues like gang scheduling of VMs and higher network bandwidth within the datacenter are addressed, we think many users of HPC applications would love to take advantage of the cloud’s new cost associativity: no extra charge for using 20 times as many computers to get your results back in 1/20th the time. We’re conditioned to buying a set of computers and then trying to keep them uniformly busy. This elasticity of resources, without paying a premium for large scale, is unprecedented, so it will take a while for clever people to exploit this opportunity.

When HPC users don’t have to pay the costs of operating their computers — someone else pays for the building space, electricity, air conditioning, and so — they may conclude that on average they can get their work done for less than commercial cloud computing, but that seems more like bad accounting than good science.

HPCwire: How does future hardware and software need to be built to take advantage of the cloud model?

Fox: For software, one key approach is focusing on horizontal scalability — the ability to accommodate more users by adding more servers. At the level of storage systems and databases, this remains elusive, as evidenced by the various offerings such as Google AppEngine’s MegaStore, Amazon’s S3 and SimpleDB, and other scalable storage services. Also, to take advantage of elasticity means that software must automatically be able to adapt to unexpected workload changes, machine failures, and eventually, even whole-datacenter outages. Looking at the spectrum of clouds today, Amazon doesn’t provide any built-in service like this (though third parties such as RightScale are stepping in to fill that gap) but allows the developer to architect anything he wants; whereas, Google AppEngine severely constrains the software architecture of your app, but in return you get a lot of that automatic management for free.

Patterson: Hardware systems should be designed at the scale of a container (at least a dozen racks), which will be the minimum purchase size. Cost of operation will match performance and cost of purchase in importance, rewarding energy proportionality, which puts idle portions of the memory, disk and network into low power mode. Processors should work well with VMs; flash memory should be added to the memory hierarchy; and LAN switches and WAN routers must improve in bandwidth and cost.


For more discussion of Berkeley’s cloud computing research, go to the Above the Clouds Web site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora sys Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over t Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers


ISC 2022 Booth Video Tours


Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow