Berkeley Releases Cloud Computing Study

By Nicole Hemsoth

February 12, 2009

Researchers at the Reliable Adaptive Distributed Systems Laboratory (RAD Lab) at UC Berkeley have released a 23-page white paper, Above the Clouds [PDF], that provides an in-depth analysis of the emerging cloud computing model. The paper is one of the first academic treatises on the subject to offer a critical profile of the cloud computing landscape today.

We asked two of the paper’s authors, David Patterson, Professor in Computer Science at UC Berkeley, and Armando Fox, Adjunct Associate Professor at UC Berkeley’s RAD Lab, to elaborate on the findings and offer their perspective on how the cloud will impact high performance computing.

HPCwire: Cloud computing has come to mean a variety of things. For the purpose of our discussion here, how would you define it?

David Patterson: Cloud computing refers to both the applications delivered as services over the Internet and the hardware and systems software in the datacenters that provide those services. The services themselves have long been referred to as Software as a Service (SaaS). The datacenter hardware and software is what we will call a cloud. When a cloud is made available in a pay-as-you-go manner to the general public, we call it a “public cloud”; the service being sold is utility computing. We use the term “private cloud” to refer to internal datacenters of a business or other organization, not made available to the general public. Thus, cloud computing is the sum of SaaS and utility computing, but does not include private clouds.

We don’t use terms such as “X as a service” (XaaS); values of X we have seen include infrastructure, hardware, and platform, but we were unable to agree, even among ourselves, what the precise differences among them might be.

Armando Fox: The key ingredient is having tremendous computing resources instantly available on-tap with no advance arrangements needed and pay-as-you-go billing. Especially relevant is the fact that once you release unused resources, you don’t have to pay for them anymore. This property of “elasticity” shifts many risks from the users of that equipment to the provider of the equipment, creating new economic models that can change the way that startups, researchers, and even established enterprises think about IT spending.

HPCwire: Cloud computing is arguably the biggest paradigm shift in IT since the PC. Although similar concepts like utility computing and grid computing have been around for some time, they never attained widespread commercial success. What pieces of technology have come together to make cloud computing viable today?

Fox: While there are many technical factors, we believe the most important is the existence of extremely large datacenters built from tens of thousands of commodity computers. It turns out also that there are cost advantages of a factor of five to seven in capitalizing a datacenter at this scale compared to, say, a medium-sized enterprise datacenter of hundreds of computers. And the huge growth of the Internet drove companies such as Google, Amazon, eBay, and others to build such datacenters, to develop infrastructure software for them, such as Google File System or Amazon Dynamo, and to develop the operational expertise to armor them against the hostile environment of the public Internet.

Patterson: These technical advances were matched by a business model that offers three key features: 1) The illusion of infinite computing resources available on demand; 2) The elimination of an up-front commitment by cloud users, thereby allowing companies to start small; and 3) The ability to pay for use of computing resources on a short-term basis as needed and to release them when unneeded. Past efforts at utility computing failed because one or two of these three critical characteristics were missing. For example, Intel Computing Services in 2000-2001 required negotiating a contract and longer-term use than per hour.

Alas, grid computing created protocols that offered shared computation and storage over long distances and did not lead to a software environment that grew beyond the HPC community.

HPCwire: There are some prominent people in the industry like Richard Stallman — quoted in the paper — who portray cloud services as marketing hype and who are wary of becoming dependent on cloud and service providers. Is this just resistance to new paradigms or do people like Stallman have a valid point?

Fox: While we believe that cloud computing is definitely more than just “marketing hype,” we agree that the uncertainty of having one’s data and applications “locked in the cloud” may be a potential obstacle to cloud adoption. As we describe in the paper, cloud offerings may differ in the level of management and functionality offered in the cloud. For example, Amazon’s offering relies heavily on the appeal of a robust open-source software ecosystem and provides relatively little in the way of “built-in” functionality; whereas, Microsoft Azure allows deployed applications to run in a managed .NET environment and make use of the .NET framework and libraries, making those applications (and potentially, the data they manage) more difficult to move to another cloud provider that might not offer .NET.

Patterson: We think there is a potential danger to business continuity if you are dependent on a single cloud computing provider. We argue that such concerns can be addressed by standardizing APIs so that multiple providers can offer the same service, so that cloud computing users can move their application if a provider offers poor service or goes out of business.

The obvious fear is that this would lead to a “race-to-the-bottom” and would flatten the profits of cloud computing providers. We offer two arguments to allay this fear. First, the quality of a service matters as well as the price, so customers will not necessarily jump to the lowest cost service. Some Internet service providers today cost a factor of ten more than others because they are more dependable and offer extra services to improve usability. Second, standardization of APIs enables a new usage model in which the same software infrastructure can be used in a local datacenter and in a public cloud. Such an option could enable “surge computing,” in which the public cloud is used to capture the extra tasks that cannot be easily run in the datacenter (or private cloud) due to temporarily heavy workloads. We think surge computing could significantly expand the size of the cloud computing market.

HPCwire: The paper lists ten obstacles to cloud computing. Can you point to one or two that seem the most important overall, and also for high performance computing in particular?

Fox: It was really hard to rank-order these, and even the order in the paper is only a partial order. But we all agreed that cloud computing needs standardized APIs that would work across cloud vendors. This would help address TWO obstacles, namely maintaining high availability and preventing data lock-in. As far as technical obstacles, we observed that just as in the past, the cost of long-haul network bandwidth is falling more slowly than all other hardware costs, so we would like to see novel ways that cloud providers could address this high cost of data transfer, such as allowing customers to FedEx a box of disks directly to the cloud datacenter.

For HPC, we think some basic software infrastructure, such as gang scheduling for clouds, would help a lot; but in general, the HPC community has not had to go through the process of re-architecting software that the Web community went through in the 90s. We think there are plenty of opportunities for innovation if HPC steps up to the plate, and an early demonstration would go a long way toward jump starting that area. We’re discussing some possibilities at the Berkeley Par Lab, just upstairs from the RAD Lab.

HPCwire: The paper also describes some new application opportunities. Can you outline these and talk about why they are particularly suitable for cloud computing?

Fox: A major new area is allowing desktop apps to extend seamlessly into the cloud; for example, the popular analysis software MATLAB and Mathematica both support this now. Also, because of the “cost associativity” of the cloud — using 1,000 computers for an hour is the same price as one computer for 1,000 hours — it is great for apps that parallelize well, like document conversion, photo or video rendering, and so on. Of course, because of the relatively high cost of data transfer, the key is applications for which a lot of computing can be done on each byte transferred into the cloud — an observation made by Jim Gray in 2003 — and for which the latency to transfer that data is small compared to the time during which the data will remain “useful” in the cloud.

We also see the cloud supporting surge computing, where a private datacenter can temporarily overflow into a public cloud to support unexpected surges in workload.

HPCwire: Where do you think cloud computing will fit into the HPC application space?

Patterson: If technical issues like gang scheduling of VMs and higher network bandwidth within the datacenter are addressed, we think many users of HPC applications would love to take advantage of the cloud’s new cost associativity: no extra charge for using 20 times as many computers to get your results back in 1/20th the time. We’re conditioned to buying a set of computers and then trying to keep them uniformly busy. This elasticity of resources, without paying a premium for large scale, is unprecedented, so it will take a while for clever people to exploit this opportunity.

When HPC users don’t have to pay the costs of operating their computers — someone else pays for the building space, electricity, air conditioning, and so — they may conclude that on average they can get their work done for less than commercial cloud computing, but that seems more like bad accounting than good science.

HPCwire: How does future hardware and software need to be built to take advantage of the cloud model?

Fox: For software, one key approach is focusing on horizontal scalability — the ability to accommodate more users by adding more servers. At the level of storage systems and databases, this remains elusive, as evidenced by the various offerings such as Google AppEngine’s MegaStore, Amazon’s S3 and SimpleDB, and other scalable storage services. Also, to take advantage of elasticity means that software must automatically be able to adapt to unexpected workload changes, machine failures, and eventually, even whole-datacenter outages. Looking at the spectrum of clouds today, Amazon doesn’t provide any built-in service like this (though third parties such as RightScale are stepping in to fill that gap) but allows the developer to architect anything he wants; whereas, Google AppEngine severely constrains the software architecture of your app, but in return you get a lot of that automatic management for free.

Patterson: Hardware systems should be designed at the scale of a container (at least a dozen racks), which will be the minimum purchase size. Cost of operation will match performance and cost of purchase in importance, rewarding energy proportionality, which puts idle portions of the memory, disk and network into low power mode. Processors should work well with VMs; flash memory should be added to the memory hierarchy; and LAN switches and WAN routers must improve in bandwidth and cost.

—–

For more discussion of Berkeley’s cloud computing research, go to the Above the Clouds Web site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This