Supercomputing Seeks Energy Savings

By Scott Jones

March 5, 2009

As high-performance computing (HPC) enters the petascale age, the scientific challenges facing researchers have never been greater. Nor has the might of today’s production petascale machines. The recent exponential growth in the power of modern supercomputers has gone hand-in-hand with an increased demand on resources — as machines have gotten bigger and faster, the amount of resources required for their operation has likewise increased.

As a result, HPC centers now face unprecedented power demands from the very machines they rely on to tackle today’s most daunting scientific challenges, from climate change to the modeling of biological processes. However, recent energy-saving innovations at ORNL are setting a new standard for resource-responsible HPC research. The laboratory has taken an all-angles approach, seeking energy savings from a suite of different areas.

ORNL’s leadership system, a Cray XT known as Jaguar, is now the fastest computer in the world for open science with a maximum speed of 1.6 petaflops. With this great power comes great responsibility, especially when it comes to energy consumption. “We take energy utilization very seriously,” said ORNL’s Leadership Computing Facility Project Director Buddy Bland. “The scale of this machine is just phenomenal. There are very few places in the world where this computer could have been built.”

Needless to say, feeding this animal is no small task: simulation at the petascale requires robust power and cooling networks to ensure maximum production from these machines. But now those necessary support networks, and the system itself, have been designed with unprecedented efficiency, responsibly satisfying Jaguar’s energy appetite. These advances make ORNL among the most energy-efficient locations for HPC, enabling groundbreaking research with minimal resource impact.

It all starts with the building. ORNL’s Computational Sciences Building (CSB) was among the first Leadership in Energy and Environmental Design (LEED)-certified computing facilities in the country, meaning that its design satisfies criteria used by the U.S. Green Building Council to measure the efficiency and sustainability of a building.

Take the computer room for example: it’s sealed off from the rest of the building by a vapor barrier to reduce the infiltration of humidity. The air pressure inside the computer room is slightly higher than the surrounding area so air will flow out of the computer room without the air outside flowing in.

Because ORNL is located in an area of the country with high humidity, keeping moisture out of the air is a high priority said Bland, one that the building was designed to tackle as efficiently as possible. Too much moisture in the air can lead to water condensation on equipment, while too little moisture can cause static electricity to build up — both of which can be problematic for a room filled with expensive electronics. Both removing moisture from or adding it to the air uses a lot of power, so keeping the humidity stable is a great tool for reducing energy consumption.

Another computing building on the ORNL campus adjacent to the CSB was recently certified LEED Gold, and Bland points out that the laboratory plans on an equal rating for future HPC facilities. But the innovation doesn’t stop with the building — there is plenty more under the roof.

Jaguar requires huge amounts of chilled water to keep the machine cool. To accomplish this as efficiently as possible, the laboratory uses high-efficiency chillers, which are the first step in a multifaceted, efficient cooling design.

A newly introduced Cray cooling system for Jaguar, dubbed ECOphlex, complements the chillers and the CSB’s efficiency. Using a common refrigerant and a series of heat exchangers, ECOphlex efficiently removes the heat generated by Jaguar to keep the computer room cool. The combination of air- and refrigerant-based cooling is much more efficient than traditional systems, which rely almost solely on air for temperature control. Without ECOphlex, the number of air-based units would not fit into the CSB’s computer room. This high-efficiency cooling system makes Jaguar possible.

ECOphlex also allows ORNL to reduce the amount of chilled water used to cool Jaguar by accommodating a broader inlet temperature range for the cooling water. Considering the fact that thousands of gallons of water per minute are necessary to keep Jaguar cool, a reduction in the volume of necessary chilled water means a proportionate reduction in the energy used to cool it. Simply put, warmer water can mean big energy savings for the laboratory and the taxpayer. Whereas most centers use 0.8 watts of power for cooling per every watt of power used for computing, ORNL enjoys a far more efficient ratio of 0.3 to 1, one of the lowest of all data centers measured.

Another important innovation is one that ORNL has been working on with Cray for several years. Instead of using the more common 208-volt power supply that Jaguar used in the past, the system now runs directly on 480-volt power. This seemingly “minor” change is saving the laboratory $1 million in the cost of copper used in the power cords for the cabinets. Furthermore, keeping the voltage high allows a lower current, which means lower resistance and less power turned into heat as it travels down the wires. The reduction in electrical resistance will reduce energy costs by as much as half a million dollars.

Finally, ORNL gets a little help from history. The power grid for the city of Oak Ridge was designed when the work conducted during the Manhattan Project used one-seventh of all the electricity in the country. The grid was constructed with every protection possible out of the fear that any interruption in supply would drastically set back development. The result: an extremely resilient local power grid.

Because of this grid, said Bland, Oak Ridge doesn’t need huge uninterruptable power supply (UPS) systems, which generally consume lots of electricity. However, the laboratory does have flywheel-based UPSs in case of an emergency. If there is a problem, the flywheel keeps generating power, which is a much more efficient process than conventional UPSs and therefore a greener method of supplying backup power. Because the flywheel-based UPS is mechanical as opposed to battery-operated, it also generates less waste in the long-term as battery replacement is not a concern.

While all of these steps are important, taken together they are greater than the sum of their parts. “There is no silver bullet,” said Bland. By tackling energy efficiency from multiple angles, ORNL is helping to ensure that the groundbreaking research taking place on its petascale machines is conducted as responsibly as possible, setting new standards in both HPC and energy responsibility.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This