Another Company Takes Up Reconfigurable Computing

By Michael Feldman

March 12, 2009

The global economic system may be collapsing, but quantitative financial analysis will endure. At least, that’s what Kuberre Systems is hoping. Earlier this week, the Massachusetts-based firm launched HANSA (Hardware Accelerator for Numerical and Systems Analysis) , a new FPGA-based HPC platform intended to accelerate compute-hungry financial applications. The overall architecture is somewhat reminiscent of Convey Computer’s HC-1, inasmuch as it virtualizes the FPGA resources from the application developer.

If you haven’t heard of Kuberre before, that’s because this is its first big push into high performance computing. The company’s been around since 2001, primarily in the financial services arena, offering an array of investment management products and services. Its foray into HPC began a couple of years ago when it started thinking about a platform that could help quants speed up their risk analysis models. Kuberre settled on an FPGA-based architecture because of its flexibility and because of the company’s familiarity with FPGA technology.

Despite the meteoric rise of GPGPU computing — and to a lesser extent, Cell-based HPC — over the last couple of years, FPGAs have offered some unique attributes for HPC. “Accelerators of all types are growing in acceptance and have great potential in HPC,” notes Addison Snell of Tabor Research. “In particular, FPGAs seem well-suited to scalable applications that rely heavily on text or integer calculations, such as genomics, event processing in real-time data feeds, or ultra-scale business computing.”

Kuberre’s HANSA can house from 1-16 FPGA boards, each one containing four FPGAs and 16 GB of memory. The FPGAs are Altera’s Stratix II generation, and the company is already looking to upgrade the platform to the newer Stratix IV chips in the near future, which should provide about 50 percent greater computational capacity. A single dual-core x86 CPU on a separate board is used to run the OS — either Linux or Windows — and to talk with the outside world. The glue that ties the FPGA boards with the CPU is the APSC — the Algorithmic Processing and Switching Complex, which manages the considerable data traffic in the system.

A fully loaded HANSA box containing 64 FPGAs and 256 GB of memory fits in a 9U enclosure, and runs about $500,000. No benchmarks are yet published for the machine, but when I spoke with Kumar Metlapalli, Kuberre’s the CEO and founder, he said a 16-board system should hit at least 250 gigaflops on Linpack. According to the company’s press release, when compared to traditional CPU-based HPC machines, a HANSA setup will do the equivalent work at “1/3 the cost, with 2 percent of the energy requirements, and in 1 percent of the floor space.”

Thanks to the shape-shifting nature of FPGAs, the hardware can be configured as a cluster/grid of 768 “RISC” CPUs for a generic C/C++ programs, or as supercomputer with 1,536 double precision cores for FP-intensive numerical processing. The machine can also be split between some combination of the two.

The software stack consists of a set of C/C++ and Java APIs and what they call firmware building blocks. The building blocks present another set of APIs to access routines for ScaLAPACK operations, correlation matrices, interpolations, and Monte Carlo simulations. There’s an additional API that allows developers to integrate data streaming operations. For example, for a financial application, real-time market data from a WOMBAT feed could be captured and passed on to other software for further number crunching.

Metlapalli says if a user’s code is GNU compliant, they just have to recompile their C/C++ source for HANSA without making any modifications. These programs can then be run in concurrent fashion on multiple instances of the platform’s virtual grid of CPUs. On the other hand, if the user wants to take advantage of data-level parallelism afforded by the FPGAs, API library calls (e.g., ScaLAPACK) will have to be inserted in the code.

There’s an additional interface provided to partition the FPGA hardware into as many as 16 “contexts” for these different classes of operations. Again using the example of a financial application, a couple of FPGA boards could be devoted to capturing real-time market streams, while four other boards could be using ScaLAPACK for risk analysis, and a third set of boards could be doing Monte Carlo simulations for interest rate forecasts.

Besides financial services applications, Metlapalli says the architecture is well suited for bioinformatics searches and CFD. Beyond that, HANSA should be generally applicable to any app that has to deal with Eigen value problems, pattern recognition, image processing, and data encryption, to name a few. Again, the reconfigurable nature of FPGAs buys you quite a bit of versatility with applications.

Metlapalli says they’ve already seen some interest with HANSA from financial institutions on the buy-side (e.g., hedge fund firms) as well as sell-side (e.g., investment banks). Apparently, the U.S. DoD has also made some inquiries.

My first take on this is that it’s a pretty compelling story, especially if you’re willing to tap into the HANSA libraries that would take fuller advantage of the FPGAs. I think there’s definitely room for both GPGPU, Cell acceleration, and reconfigurable computing in the HPC ecosystem, but this is a tough economic climate to introduce innovation that doesn’t produce immediate bottom line savings in IT budgets. I hope companies like Kuberre can grab a few customer wins and help keep reconfigurable computing in the HPC mix.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This