Finding the Door in the Memory Wall, Part 2

By Erik Hagersten

March 23, 2009

Trading Parallelism for Performance

It is a common belief that only sequential applications need to be adapted for parallel execution on multicore processors. However, many existing parallel algorithms are also a poor fit. They have simply been optimized for the wrong design parameters.

In the past we have been striving for algorithms to maximize parallelism and at the same time minimize the communication between the threads. For multicore processors, however, the cost of thread communication is relatively cheap as long as the communicated data resides in a cache shared by the threads. Also, the amount of parallelism that can be explored by a multicore processor is limited by its number of cores multiplied by the number of threads running on each core. Instead, a third parameter is gaining importance for parallel multicore applications: the memory usage.

In this, the second article of the series, we contrast the behavior of a highly parallel state-of-the-art algorithm with that of a moderately-parallel algorithm in which some of the parallelism has been traded for lower DRAM bandwidth demands. We show the latter outperforms the highly parallel algorithm by a factor three on today’s multicore processors. The techniques used and some of the performance numbers are summarized here. A more detailed description of the algorithms discussed in this paper was presented at ICS 2006 together with colleagues and students from Uppsala University.

Highly Parallel Algorithm

The Gauss-Seidel algorithm (GS) is used to smooth an array with NxN elements. The original GS algorithm is pictured in Figure 1a. The new value (yellow) for each element of an NxN array is calculated as the average of its own and its four neighbors’ values. The elements of the array are updated row-wise. The element numbers in the figure refer to their iteration age. At the end of each iteration, convergence is checked and, if the condition is not met, the array will be iterated again. Typically, the array is iterated 10–30 times before the convergence is met. The red arrows in Figure 1a indicate the data dependences of this algorithm. The new values to the left of and above the yellow element have to be calculated before the yellow value can be calculated. These data dependencies make the original algorithm hard to parallelize. Memory Wall Part 2 - Fig 1

Figure 1b shows the popular red/black variation of the algorithm, where only every other element is updated in a sweep of the array (the update of red elements is shown in Figure 1b). In a second sweep, the other (black) elements are updated. Unlike the original scheme, this red/black algorithm has no data dependencies during sweeps since red elements do not depend on any other red elements. In other words, all the elements of a sweep can theoretically be updated in parallel – its parallelism is N2/2.

Figure 1c shows how two cores may divide the work. This scheme keeps the communication between the cores at a minimum: only values of the element on the boarder between the threads need to be communicated, and the threads only need to synchronize once per sweep. So, according to the old definition of a good algorithm, the red/black algorithm is close to perfect: plenty of parallelism and a minimum of communication. There is only one drawback: it runs slowly on a multicore processor, as shown in Figure 2.
Memory Wall Part 2 - Fig 2

Typically, the array size used with Gauss-Seidel is too large to fit in a multicore processor cache. Each iteration will force the entire array to be read from memory. Actually, for the red/black scheme, the array will have to be read twice per iteration, first during the red updates and then during the black updates. This will quickly saturate the DRAM bandwidth and limit the performance on a multicore processor.

Finding the Door in the Memory Wall

Instead of just maximizing parallelism, we could try to minimize DRAM bandwidth usage for a GS implementation. If we apply a blocking scheme to the original GS algorithm, we could keep an active subset of the array, called a block, in the cache and reuse these elements many times before the data are evicted from the cache. Because of the data dependence of the original GS algorithm (the red arrows in Figure 1a) we have to apply a sliding blocking technique, shown in Figure 3a. The active block inside the red frame shown includes three rows. Once the next iteration values for all the elements in the block have been updated, as shown in 3a, the block is slid down one row, as shown in Figure 3b, and the next iteration values for those elements are updated. This improves the reuse of element values while they reside in the cache. Using this scheme, each element of the array will advance three iterations per sweep, which means that the array is only read from DRAM every third iteration. This implies that only one sixth of the DRAM bandwidth is needed compared with the red/black algorithm.

If the number of rows in the active block increases, even less DRAM bandwidth will be needed. Figure 4 shows the relationship between bandwidth usage and block size, as shown by the ThreadSpotter tool for different cache sizes. A typical last-level multicore cache is in the 2-12 Mbyte range. Bandwidth demand can be reduced in this range by more than an order of magnitude using the blocking GS scheme instead of the red/black GS scheme.

Figure 3c shows a parallel version of the blocked GS. A drawback is that the threads will have to synchronize row-wise to make sure the thread to the left stays slightly ahead of the thread to the right. In sum, the blocked GS algorithm produces about an order of magnitude more thread communication than red/black GS. Also, its parallelism is much worse, in the order of N parallel threads (one per column) can help out simultaneously, compared with the N2/2 parallelism of the red/black algorithm. Still, it outperforms the red/black algorithm by a factor of three on a dual-socket quad-core system thanks to the much lower DRAM bandwidth need. Similar results have been observed when comparing 3D versions of the algorithms. Figure 5 compares the performance of the two algorithms when running on a two-socket quad-core system. The red/black saturates the bandwidth already at two active cores, while the sliding GS algorithm scales well even on a two-socket system without any special thread applied.

Summing Up

In Part 1 of this article series, we saw how a throughput workload created a superlinear slowdown on a multicore architecture due to increased cache pressure, and in this article — Part 2 of the series — we were forced to change “the ideal” highly parallel and low-communication algorithm in order for it to run well on a multicore processor. This once more drives home the point made by Sanjiv Shah a couple of weeks ago: only focusing on parallelism is not always the best way to get good performance on a multicore architecture. In Part 3, we will take a look at various techniques for identifying when optimizations are needed and compare a few simple optimization tricks.

About the Author

Erik Hagersten is chief technology officer at Acumem, a Swedish-based company that offers performance analysis tools for modern processors. He was the chief architect for high-end servers at Sun Microsystems (the former Thinking Machines development team) for six years before moving back to Sweden in 1999. Erik was a consultant to Sun until Acumem started in 2006. Since 2000 his research team at Uppsala University has developed the key technology behind Acumem.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This