Solid State Drives: Change in a Flash

By John West

March 26, 2009

There has been a lot of interest among the enterprise datacenter crowd lately in a relatively old technology: solid state drives (SSDs). Today’s flash drives are faster and cheaper than their predecessors, and are almost certain to assume a place in the standard enterprise IT architect’s toolkit. But it seems that they have quite a bit of potential in HPC too, though not (just) in the way you might think.

When I showed up at my first HPC gig in the early 1990s, our Crays had solid state disks, and they weren’t even close to new then; semiconductor memory-based SSDs date back to the 1970s and 80s. But they were expensive, and they didn’t really have a place in the commodity-driven economics of the commodity-processor supercomputers that emerged beginning in the mid-90s.

So what is an SSD? The Wikipedia entry says:

A solid-state drive (SSD) is a data storage device that uses solid-state memory to store persistent data. An SSD emulates a hard disk drive interface, thus easily replacing it in most applications.

Michael Cornwell, lead technologist for flash memory technology at Sun, has a similar definition in few words, “An SSD is a non-rotating device that emulates what a disk drive does.”

The reason for the renewed interest in this old idea comes down to money. The new generation of SSDs are being built from NAND flash components, the kind of nonvolatile memory used in everything from USB memory drives to cameras and iPods. Driven by the demand in the consumer market, SSD prices have dropped considerably. You can see this effect for yourself when you head down to Best Buy and find that you can buy a 4 GB flash drive for less than $15.00. Just a few years ago, that amount of flash memory would have cost you hundreds of dollars.

This demand also caused the flash memory industry to leapfrog the DRAM industry in terms of the size of the silicon process used to create the chips. David Flynn, chief technical officer and co-founder of Fusion-io, explains that all of this has come together to make NAND flash a very attractive storage option. “Flash memory costs less per bit (than DRAM), doesn’t put off heat, and you can stack it vertically into packages and then stack the packages,” putting a lot of bits in a very small space.

Flash-based SSDs have many inherent advantages over spinning disks for storage that make them attractive to system architects. In addition to being dense and relatively cool there are no moving parts and, unlike hard disk drives, flash-based SSDs can support between 10 and 20 operations at the same time, making them inherently parallel devices. Flash storage also typically has at least three orders of magnitude lower latency than traditional spinning drives (microseconds versus milliseconds).

Sun’s Cornwell says that, as an example, Sun’s recently announced SSD offers “thousands of IOPS, which is much greater than the 300 or so you can get from traditional hard disk drives.” SSDs also offer substantial power savings, consuming an order of magnitude less power than hard disk drives.

Sounds great, so let’s pull out all the disks and replace them with SSDs, right? Not so fast, says Jimmy Daley, HP’s Industry Standard Server (ISS) marketing manager. First of all, cost is an issue. While flash-based SSDs are much faster than traditional spinning disks, they are also “an order of magnitude or two more expensive per GB than disk.”

There are also other issues, like the disparity of read and write speeds. For example, Cornwell says Sun’s SSD solution achieves 35,000 IOPS on read, but only 3,300 on write — a big difference that may need to be considered, depending upon your application. On the other hand, Flynn maintains his company’s ioDrive keeps write throughput within shouting distance of its read performance and recent tests by Tom’s Hardware seem to bear this out.

System designers also need to consider that flash devices have unknown performance characteristics in the enterprise. The cells that are used to store the bits in NAND flash can only be rewritten a fixed numbers of times. This hasn’t typically been a problem in the consumer space, where the duty cycle can be as low as 0.2 or 0.5 percent. While flash memory vendors are addressing this issue with write leveling algorithms and other, more innovative approaches, we still do not know how these durability characteristics will impact performance in the enterprise, where duty cycles can be 100 times greater.

So, where does flash fit in HPC? First, there are the obvious density and power advantages that could have a big impact in the viability of putting a specific system into a specific facility. Also, many vendors are thinking in terms of using flash-based SSDs to replace spinning disks used for scratch space on high performance computers. This approach gives each of a system’s processors much faster access to data during computations, when time is of the essence. Being able to read data so much faster could be key to enabling the growing class of data-intensive applications. This could also make, for example, traditional application checkpoint/restart viable on a larger class of systems than currently viable today.

But there are other places that flash-based memory devices might have an even bigger impact in HPC. David Flynn, the chief technical officer at flash memory component maker Fusion-io, thinks in terms of balance, and in particular in terms of how imbalances have driven system designers to compensate.

For Flynn the growing disparity between access times for data on disk versus data closer to the CPU has created “pathologies” in system design and user behavior. He observes that system designers have amassed large amounts of RAM to increase capacities when they could keep data near the CPU, and have amassed large numbers of disk spindles in complex parallel filesystems to improve bandwidth when data had to be moved to or from secondary storage. He also sees the scale out datacenter as a symptom of data access disparity: rather than plugging lots of RAM and disk into single systems, many smaller systems are aggregated to accomplish the same thing.

“But the most pernicious pathology,” Flynn says, “occurs when application specialists spend hours tuning applications to effectively manage data flow. Inevitably, this leads to very brittle applications that have to be re-tuned when moving from one system to another.”

Flynn was formerly the chief architect at Linux Networx, and says that his experience in HPC has led him to conclude that “balanced systems lead to cost effective throughput.” Fusion-io’s device connects to the PCI Express bus, and Flynn conceptualizes the flash memory as sitting between memory and disk, relieving the performance pressure on both, and creating a new first-class participant in the data flow hierarchy.

“You can put 15 Fusion-io cards in a commodity server and get 10 GB/s of throughput from a 10 TB flash pool with over one million IOPS of performance,” says Flynn. How does this matter? He gave NASTRAN as a customer example, in which jobs that took three days to run would complete in six hours on the same system and with no change in the application after the installation of the flash device.

Despite the promise of faster performance for less power, there are still significant hurdles to be cleared before flash-based SSDs achieve broad deployment in either enterprise or supercomputing datacenters. The read/write disparity needs to be addressed in a way that doesn’t compromise the current power advantages of flash, and questions of durability and reliability with the high duty cycles of enterprise-grade equipment still need to be addressed.

But one thing we have seen in HPC over the past 20 years is that volume wins, and the forces driving the volume adoption of flash-based storage in the consumer market aren’t slowing down. As prices continue to fall, HPC vendors are going to be increasingly motivated to come up with new ways to build value on this consumer platform and make it a better fit for serious computing. This could mean some important advantages for users desperate for better performance from their data hierarchy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This