Sequoia: The Next Generation of Supercomputer

By Markus Henkel

April 28, 2009

What would the former IBM chief executive Thomas Watson have to say about the current development taking place with computers? After all it was Watson who claimed in 1943 that the world would need about five computers. Today, that claim looks a little wayward, to say the least, with millions of computers being sold over-the-counter every year.

When computer performance is bundled together, we have what is known as a supercomputer. In the US, plans are already underway to build just such a computing colossus that will overshadow all previous such systems. The “Sequoia” project aims to build the first computer capable of reaching the 20 petaflop mark. In comparison, “Roadrunner,” currently the world’s fastest computer, just about manages a petaflop, meaning that “Sequoia” would make it look more like the world’s fastest calculator.

But what does 20 petaflops per second mean? Primarily, 20 petaflops is a value, a 20 with fifteen zeros, and is in itself nothing tangible. In order to form a better appreciation for what “Sequoia” with its 20 petaflops is capable of, it would take six billion people all equipped with calculators 1,000 years to do the calculations that “Sequoia” can manage in one day. That’s a scenario that in Watson’s day would have caused an uproar and been considered as being beyond even the wildest borders of fiction.

Before “Sequoia” is put into operation, another system will ensure that everything runs exactly to plan. The supercomputer “Dawn,” primarily a delivery system, will be based on Blue Gene/P technology and reach performances of over 500 teraflops. Both computers will work in tandem, although “Dawn” will afford users the opportunity of developing or adapting their applications for Blue Gene technology and to test and improve their scalability. “Dawn” is, as such, a typical porting and developing system. It will be the system on which applications are created and these applications will then execute operations and calculations in the petaflop range on “Seqouia.” Since there are not so many of these applications around, the supposedly smaller computer takes on added significance for users. They can undertake and carry out initial tests and studies and attempt to pave the way toward such petaflop applications.

The National Nuclear Security Administration, which commissioned the project, is a part of the US Department of Energy. It wants to see “Sequoia” in use by 2012. By then no fewer than 96 racks will provide accommodation for the 1.6 million IBM POWER processors. Klaus Gottschalk
According to official press releases, “Sequoia” will contribute to increased security and reliability of the United States nuclear arsenal. It goes without saying, of course, that other types of security aspects pertaining to the nuclear arsenal will be simulated, especially with regard to keeping a secure eye on aging materials. All over the world, scientists have been searching for solutions to problems raised by the safe disposal and storage of nuclear waste.

“We see the entire project from the point of view of the researcher,” said Klaus Gottschalk, IT Systems architect with IBM. “For him the use of the computer is easy to evaluate. Large sums are being invested to help drive development onwards.”

However, this giant machine is not only capable of turning nuclear research into visible, viewable action. The enormous potential offered by a 20 petaflop computer extends to far beyond nuclear weapons safety. According to IBM estimates, the supercomputer will be able to forecast weather up to 40 times more precisely than is possible today, and be invaluable in such areas as astronomy, energy, biotechnology and climate research. ”Modeling and simulation is crucial for ensuring the ability of our country to innovate and compete globally,” explained Dr. Cynthia McIntyre, Senior VP at the Council on Competitiveness.

At this point, IBM has not said exactly how much power “Sequoia” is going to need. But according to the company, the machine is set to break all records in this area as well. It has been estimated that it will be the world’s first computer to achieve an efficiency of 3,050 calculations per watt.

In terms of supercomputing, the US is no longer the only big player. The IBM-JUGENE system in Juelich, Germany, means Europe is currently ranked 11th in a list of the world’s 500 fastest computers compiled by the universities of Mannheim and Tennessee. Accordingly, the Juelich Research Center has been top of the tree in Europe for the last two years in terms of fastest computer. Plans are already afoot in Juelich to install the first petaflop computer in Europe — incidentally also from IBM — by the middle of this year.

In all probability, after an initial introduction, this supercomputer will force its way into the top three of the world’s fastest computers. It will be capable of one quadrillion computational operations per second. The new supercomputer’s roughly 295,000 processors will then be housed in 72 phonebox-sized cabinets in the computing labs of the Juelich Supercomputing Center. Replete with 144 terabytes of RAM, and together with the remaining computers at the research center, Juelich will then be operating at 1.3 petaflops per second. In addition to its high speed, the supercomputer will also have access to around 6 petabytes of hard disk. That more or less corresponds to sufficient memory to store all the information contained on over one million DVDs.

This will be the first machine built specifically for the Gauss Center, which has centers in Juelich, Stuttgart and Garching in Germany. The Gauss Allianz is a European-wide consortium that bundles the performance capacity of all Europe’s supercomputers. According to a spokesperson for the research centre at Juelich, “The three centers should speak with one voice and provide a counterpart and intermediary for scientists, particularly on the international stage.”

The Juelich Research Center’s main focus is to be found in fundamental research. The present Blue Gene/P system has around 20 applications that use up the majority of its computing time. Top of this list belongs to the quantum chromodynamics, or QCD, application. This application is closely related to quantum electrodynamics, which help describe the strong interactions of electrically-charged particles by means of exchange of photons — thus forming a theory from high energy physics.

In total, scientists from all manners of disciplines — from materials science through particle physics to medicine and environmental research — will have the opportunity to book themselves some computer time on the Juelich system. An independent committee of experts will then decide on which plans are best suited and allocate computing time accordingly. Researchers will be pleased at the enthusiasm for investment in such projects. Achim Bachem, chairman of the research center, states confidently, “Computers capable of this kind of performance form a universal key technology in helping find solutions to the most complex and most urgent scientific problems.”

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at info@laengsynt.de or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This