Sequoia: The Next Generation of Supercomputer

By Markus Henkel

April 28, 2009

What would the former IBM chief executive Thomas Watson have to say about the current development taking place with computers? After all it was Watson who claimed in 1943 that the world would need about five computers. Today, that claim looks a little wayward, to say the least, with millions of computers being sold over-the-counter every year.

When computer performance is bundled together, we have what is known as a supercomputer. In the US, plans are already underway to build just such a computing colossus that will overshadow all previous such systems. The “Sequoia” project aims to build the first computer capable of reaching the 20 petaflop mark. In comparison, “Roadrunner,” currently the world’s fastest computer, just about manages a petaflop, meaning that “Sequoia” would make it look more like the world’s fastest calculator.

But what does 20 petaflops per second mean? Primarily, 20 petaflops is a value, a 20 with fifteen zeros, and is in itself nothing tangible. In order to form a better appreciation for what “Sequoia” with its 20 petaflops is capable of, it would take six billion people all equipped with calculators 1,000 years to do the calculations that “Sequoia” can manage in one day. That’s a scenario that in Watson’s day would have caused an uproar and been considered as being beyond even the wildest borders of fiction.

Before “Sequoia” is put into operation, another system will ensure that everything runs exactly to plan. The supercomputer “Dawn,” primarily a delivery system, will be based on Blue Gene/P technology and reach performances of over 500 teraflops. Both computers will work in tandem, although “Dawn” will afford users the opportunity of developing or adapting their applications for Blue Gene technology and to test and improve their scalability. “Dawn” is, as such, a typical porting and developing system. It will be the system on which applications are created and these applications will then execute operations and calculations in the petaflop range on “Seqouia.” Since there are not so many of these applications around, the supposedly smaller computer takes on added significance for users. They can undertake and carry out initial tests and studies and attempt to pave the way toward such petaflop applications.

The National Nuclear Security Administration, which commissioned the project, is a part of the US Department of Energy. It wants to see “Sequoia” in use by 2012. By then no fewer than 96 racks will provide accommodation for the 1.6 million IBM POWER processors. Klaus Gottschalk
According to official press releases, “Sequoia” will contribute to increased security and reliability of the United States nuclear arsenal. It goes without saying, of course, that other types of security aspects pertaining to the nuclear arsenal will be simulated, especially with regard to keeping a secure eye on aging materials. All over the world, scientists have been searching for solutions to problems raised by the safe disposal and storage of nuclear waste.

“We see the entire project from the point of view of the researcher,” said Klaus Gottschalk, IT Systems architect with IBM. “For him the use of the computer is easy to evaluate. Large sums are being invested to help drive development onwards.”

However, this giant machine is not only capable of turning nuclear research into visible, viewable action. The enormous potential offered by a 20 petaflop computer extends to far beyond nuclear weapons safety. According to IBM estimates, the supercomputer will be able to forecast weather up to 40 times more precisely than is possible today, and be invaluable in such areas as astronomy, energy, biotechnology and climate research. ”Modeling and simulation is crucial for ensuring the ability of our country to innovate and compete globally,” explained Dr. Cynthia McIntyre, Senior VP at the Council on Competitiveness.

At this point, IBM has not said exactly how much power “Sequoia” is going to need. But according to the company, the machine is set to break all records in this area as well. It has been estimated that it will be the world’s first computer to achieve an efficiency of 3,050 calculations per watt.

In terms of supercomputing, the US is no longer the only big player. The IBM-JUGENE system in Juelich, Germany, means Europe is currently ranked 11th in a list of the world’s 500 fastest computers compiled by the universities of Mannheim and Tennessee. Accordingly, the Juelich Research Center has been top of the tree in Europe for the last two years in terms of fastest computer. Plans are already afoot in Juelich to install the first petaflop computer in Europe — incidentally also from IBM — by the middle of this year.

In all probability, after an initial introduction, this supercomputer will force its way into the top three of the world’s fastest computers. It will be capable of one quadrillion computational operations per second. The new supercomputer’s roughly 295,000 processors will then be housed in 72 phonebox-sized cabinets in the computing labs of the Juelich Supercomputing Center. Replete with 144 terabytes of RAM, and together with the remaining computers at the research center, Juelich will then be operating at 1.3 petaflops per second. In addition to its high speed, the supercomputer will also have access to around 6 petabytes of hard disk. That more or less corresponds to sufficient memory to store all the information contained on over one million DVDs.

This will be the first machine built specifically for the Gauss Center, which has centers in Juelich, Stuttgart and Garching in Germany. The Gauss Allianz is a European-wide consortium that bundles the performance capacity of all Europe’s supercomputers. According to a spokesperson for the research centre at Juelich, “The three centers should speak with one voice and provide a counterpart and intermediary for scientists, particularly on the international stage.”

The Juelich Research Center’s main focus is to be found in fundamental research. The present Blue Gene/P system has around 20 applications that use up the majority of its computing time. Top of this list belongs to the quantum chromodynamics, or QCD, application. This application is closely related to quantum electrodynamics, which help describe the strong interactions of electrically-charged particles by means of exchange of photons — thus forming a theory from high energy physics.

In total, scientists from all manners of disciplines — from materials science through particle physics to medicine and environmental research — will have the opportunity to book themselves some computer time on the Juelich system. An independent committee of experts will then decide on which plans are best suited and allocate computing time accordingly. Researchers will be pleased at the enthusiasm for investment in such projects. Achim Bachem, chairman of the research center, states confidently, “Computers capable of this kind of performance form a universal key technology in helping find solutions to the most complex and most urgent scientific problems.”

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at info@laengsynt.de or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This