Sequoia: The Next Generation of Supercomputer

By Markus Henkel

April 28, 2009

What would the former IBM chief executive Thomas Watson have to say about the current development taking place with computers? After all it was Watson who claimed in 1943 that the world would need about five computers. Today, that claim looks a little wayward, to say the least, with millions of computers being sold over-the-counter every year.

When computer performance is bundled together, we have what is known as a supercomputer. In the US, plans are already underway to build just such a computing colossus that will overshadow all previous such systems. The “Sequoia” project aims to build the first computer capable of reaching the 20 petaflop mark. In comparison, “Roadrunner,” currently the world’s fastest computer, just about manages a petaflop, meaning that “Sequoia” would make it look more like the world’s fastest calculator.

But what does 20 petaflops per second mean? Primarily, 20 petaflops is a value, a 20 with fifteen zeros, and is in itself nothing tangible. In order to form a better appreciation for what “Sequoia” with its 20 petaflops is capable of, it would take six billion people all equipped with calculators 1,000 years to do the calculations that “Sequoia” can manage in one day. That’s a scenario that in Watson’s day would have caused an uproar and been considered as being beyond even the wildest borders of fiction.

Before “Sequoia” is put into operation, another system will ensure that everything runs exactly to plan. The supercomputer “Dawn,” primarily a delivery system, will be based on Blue Gene/P technology and reach performances of over 500 teraflops. Both computers will work in tandem, although “Dawn” will afford users the opportunity of developing or adapting their applications for Blue Gene technology and to test and improve their scalability. “Dawn” is, as such, a typical porting and developing system. It will be the system on which applications are created and these applications will then execute operations and calculations in the petaflop range on “Seqouia.” Since there are not so many of these applications around, the supposedly smaller computer takes on added significance for users. They can undertake and carry out initial tests and studies and attempt to pave the way toward such petaflop applications.

The National Nuclear Security Administration, which commissioned the project, is a part of the US Department of Energy. It wants to see “Sequoia” in use by 2012. By then no fewer than 96 racks will provide accommodation for the 1.6 million IBM POWER processors. Klaus Gottschalk
According to official press releases, “Sequoia” will contribute to increased security and reliability of the United States nuclear arsenal. It goes without saying, of course, that other types of security aspects pertaining to the nuclear arsenal will be simulated, especially with regard to keeping a secure eye on aging materials. All over the world, scientists have been searching for solutions to problems raised by the safe disposal and storage of nuclear waste.

“We see the entire project from the point of view of the researcher,” said Klaus Gottschalk, IT Systems architect with IBM. “For him the use of the computer is easy to evaluate. Large sums are being invested to help drive development onwards.”

However, this giant machine is not only capable of turning nuclear research into visible, viewable action. The enormous potential offered by a 20 petaflop computer extends to far beyond nuclear weapons safety. According to IBM estimates, the supercomputer will be able to forecast weather up to 40 times more precisely than is possible today, and be invaluable in such areas as astronomy, energy, biotechnology and climate research. ”Modeling and simulation is crucial for ensuring the ability of our country to innovate and compete globally,” explained Dr. Cynthia McIntyre, Senior VP at the Council on Competitiveness.

At this point, IBM has not said exactly how much power “Sequoia” is going to need. But according to the company, the machine is set to break all records in this area as well. It has been estimated that it will be the world’s first computer to achieve an efficiency of 3,050 calculations per watt.

In terms of supercomputing, the US is no longer the only big player. The IBM-JUGENE system in Juelich, Germany, means Europe is currently ranked 11th in a list of the world’s 500 fastest computers compiled by the universities of Mannheim and Tennessee. Accordingly, the Juelich Research Center has been top of the tree in Europe for the last two years in terms of fastest computer. Plans are already afoot in Juelich to install the first petaflop computer in Europe — incidentally also from IBM — by the middle of this year.

In all probability, after an initial introduction, this supercomputer will force its way into the top three of the world’s fastest computers. It will be capable of one quadrillion computational operations per second. The new supercomputer’s roughly 295,000 processors will then be housed in 72 phonebox-sized cabinets in the computing labs of the Juelich Supercomputing Center. Replete with 144 terabytes of RAM, and together with the remaining computers at the research center, Juelich will then be operating at 1.3 petaflops per second. In addition to its high speed, the supercomputer will also have access to around 6 petabytes of hard disk. That more or less corresponds to sufficient memory to store all the information contained on over one million DVDs.

This will be the first machine built specifically for the Gauss Center, which has centers in Juelich, Stuttgart and Garching in Germany. The Gauss Allianz is a European-wide consortium that bundles the performance capacity of all Europe’s supercomputers. According to a spokesperson for the research centre at Juelich, “The three centers should speak with one voice and provide a counterpart and intermediary for scientists, particularly on the international stage.”

The Juelich Research Center’s main focus is to be found in fundamental research. The present Blue Gene/P system has around 20 applications that use up the majority of its computing time. Top of this list belongs to the quantum chromodynamics, or QCD, application. This application is closely related to quantum electrodynamics, which help describe the strong interactions of electrically-charged particles by means of exchange of photons — thus forming a theory from high energy physics.

In total, scientists from all manners of disciplines — from materials science through particle physics to medicine and environmental research — will have the opportunity to book themselves some computer time on the Juelich system. An independent committee of experts will then decide on which plans are best suited and allocate computing time accordingly. Researchers will be pleased at the enthusiasm for investment in such projects. Achim Bachem, chairman of the research center, states confidently, “Computers capable of this kind of performance form a universal key technology in helping find solutions to the most complex and most urgent scientific problems.”

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at or visit the Web site:

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This